期刊文献+

ON A CLASS OF KTHE SEQUENCE SPACES WITH NORMAL STRUCTURE

ON A CLASS OF KTHE SEQUENCE SPACES WITH NORMAL STRUCTURE
在线阅读 下载PDF
导出
摘要 In this note, we investigate the generalized modulus of convexity δ(λ) and the generalized modulus smoothness p(λ). We obtain some estimates of these moduli for X=lp. We obtain inequalities between WCS coefficient of a KSthe sequence space X and δX(λ). We show that, for a wide class of class the sequence spaces X, if for some ε∈(0, 9/10] holds δx(e) 〉 1/3(1- √3/2)ε, then X has normal structure. In this note, we investigate the generalized modulus of convexity δ(λ) and the generalized modulus smoothness p(λ). We obtain some estimates of these moduli for X=lp. We obtain inequalities between WCS coefficient of a KSthe sequence space X and δX(λ). We show that, for a wide class of class the sequence spaces X, if for some ε∈(0, 9/10] holds δx(e) 〉 1/3(1- √3/2)ε, then X has normal structure.
作者 B. Zlatanov
出处 《Acta Mathematica Scientia》 SCIE CSCD 2011年第2期576-590,共15页 数学物理学报(B辑英文版)
基金 supported by National Fund for Scientific Research of the Bulgarian Ministry of Education and Science, Contract MM-1401/04
关键词 Weakly convergent sequence coefficient modulus of convexity generalizedmodulus of convexity normal structure Weakly convergent sequence coefficient modulus of convexity generalizedmodulus of convexity normal structure
作者简介 E-mail: bzlatanov@gmail.com
  • 相关文献

参考文献16

  • 1Bynum W. Normal structure coefficients for Banach spaces. Pacific J Math, 1980, 86:427-436.
  • 2Brodskii M, Milman D. On the center of convex sets. Dokl Akad Nauk SSSR, 1948, 59:837-840.
  • 3Wang F, Cui H. Some estimates on the weakly convergent sequence coefficient in Banach spaces. J Inequal Pure and Appl Math, 2006, 7(5) Art 161:427-436.
  • 4Dhompongsa S, Kaewkhao A, Tasena S. On a generalized James constant. J Math Anal Appl, 2003, 285: 419-435.
  • 5Dhompongsa S, Kaewkhao A. A note on properties that imply the fixed point property. Abstr Appl Anal, 2006, 2006: Article ID 34959.
  • 6Gao J. Normal structure ant smoothness in Banach spaces. J Nonlinear Functional Anal Appl, 2005, 10: 103-115.
  • 7Changsen Y, Fenghui W. On generalized modulus of convexity and uniform normal structure. Acta Math Scientia, 2007, 126:838-844.
  • 8Gao J, Lau K. On two classes Banach spaces with uniform normal structure. Studia Math, 1991, 99: 41-56.
  • 9Lindenstrauss J, Tzafriri L. Classical Banach Spaces I, Sequence Spaces. Berlin: Springer-Verlag, 1977.
  • 10Hiai F. Representation of additive functional on vector-valued normed Kothe spaces. Kodai Math J, 1979, 2:300-313.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部