期刊文献+

小波法的网络流量奇异谱估计

Singularity Spectrum Estimation for Network Traffic Based on Wavelet Transform
在线阅读 下载PDF
导出
摘要 网络流量整形、调度、异常检测、管理与控制及保障QoS需求等都需要了解业务流的局部变化特性.本文给出离散小波及其模极大值的网络流量奇异谱估计算法及影响因素,并通过真实的网络业务数据对算法进行了评估和比较.实验结果表明,两种方法的奇异谱估计能有效刻画网络业务流的局部变化特征,并且能通过奇异谱特征参数之间的差别描述不同业务流之间的差异性,也表明了在一定条件下,离散小波模极大法更加优越. The analysis of network traffics plays a significant role in many aspects of network engineering, such as network traffic shaping, scheduling, intrusion detection, traffic monitoring, accounting, quality of service (QoS) guarantee, etc. In this paper, we present the singularity spectrum estimation based on discrete wavelet transform and discrete wavelet transform modulus maxima technology including the principle, procedure and condition parameters. We apply them to real network in order to demonstrate the capability of two methods on different network traffics. The experimental results show that both of them are efficient in studying the singularities of the network traffics. And the discrete wavelet transform modulus maxima is more accurate and efficient in detecting singularities of different network traffics by acquiring more different characteristic parameter of the singularity spectrum.
出处 《小型微型计算机系统》 CSCD 北大核心 2011年第4期680-685,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金-广东联合基金重点项目(U0735002)资助 国家"八六三"高技术研究发展计划项目(2007AA01Z449)资助 国家自然科学基金面上项目(60970146)资助
关键词 网络流量 离散小波变换 离散小波模极大 多重分形 奇异谱 network traffic discrete wavelet transform (DWT) discrete wavelet transform modulus maxima (DWTMM) multifractal singularity spectrum
作者简介 E—mail:wangbq@mail.sysu.edu.cn王变琴.女,1963年生,高级工程师,博士研究生,研究方向为网络应用识别、行为分析与控制; 余顺争.男,1958年生,教授,博士生导师,研究方向为Intemet流量测量、分析、建模,统计异常检测,无线网络.
  • 相关文献

参考文献8

二级参考文献69

  • 1肯尼斯·法尔科内 曾文曲等(译).分形几何-数学基础及其应用[M].沈阳:东北大学出版社,1991.340-353.
  • 2吴甘沙.基于测量和分析的Internet网络模拟及其实现[D].上海:复旦大学,2000.
  • 3Leland W., Taqqu M., Willinger W., Wislson D.. On the self-similar nature of ethernet traffic(Extended Version). IEEE/ACM Transactions on Networking, 1994, 2(1): 1~15
  • 4Feldmann A., Gilbert A.C., Willinger W.. Data networks as cascades: Investigating the multifractal nature of internet WAN traffic. In: Proceedings of ACM SIGCOMM'98, Vancouver, 1998, 42~55
  • 5Maglaris B., Anastassiou D., Sen D. et al.. Performance model of statistical multiplexing in packet video communications. IEEE Transactions on Communication, 1988, 36(7): 838~844
  • 6Beran J., Sherman R., Taqqu M.S.. Long-range dependence in variable-bit-rate video traffic. IEEE Transactions on Communication, 1995, 43(2): 1566~1579
  • 7Garret M.W., Willinger W.. Analysis, modeling and generation of self-similar VBR video traffic. In: Proceedings of ACM SIGCOMM'94, London, 1994, 269~280
  • 8Ma Sheng, Ji Chuan-Yi. Modeling heterogeneous network traffic in the wavelet domain. IEEE/ACM Transactions on Networking, 2001, 9(5): 634~649
  • 9Riedi R.H., Crouse M.S., Ribeiro V.J. et al.. A multifractal wavelet model with application to network traffic. IEEE Transactions on Information Theory, 1999, 45(3): 992~1018
  • 10Mannersalo P., Norros I.. Multifractal analysis of real ATM traffic: A first look. In: Proceedings of COST 257TD (97), VTT Information Technology, Finland, 1997

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部