期刊文献+

SAR图像压缩采样恢复的GPU并行实现 被引量:8

A GPU-based Parallel Implementation of Compressive Sampling Reconstruction for SAR Image Compression
在线阅读 下载PDF
导出
摘要 压缩采样(CS)技术被尝试应用于合成孔径雷达(SAR)图像的压缩。然而,高分辨SAR图像数据量大,导致压缩采样后的恢复过程计算量大,传统的中央处理器(CPU)无法实时成像。为解决这一问题,该文在图形处理器(GPU)平台上设计了CS的并行方法,并实现了SAR图像压缩。实验结果表明,在保证SAR图像压缩性能的前提下,该文设计的GPU并行处理速度能够提高到CPU串行处理的8.8倍。 Compressive Sampling(CS) technique has been adopted to compress Synthetic Aperture Radar(SAR) images.However,due to the mass data of high resolution SAR images,the reconstruction of compressive sampling generates huge computational load,making it impossible to run on traditional CPU at real time.To solve this problem,this paper attempts to implement the reconstruction produce in parallel based on Graphics Processing Unit(GPU) device.The results show that the GPU-based implementation is faster(up to 8.8 times) than the CPU-based implementation.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第3期610-615,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(40901157) 国家973计划项目(2010CB731901) 教育部新教师基金(200800031050)资助课题
关键词 合成孔径雷达(SAR) 压缩采样(CS) 并行计算 图形处理器(GPU) Synthetic Aperture Radar(SAR) Compressive Sampling(CS) Parallel computation Graphic Processing Unit(GPU)
作者简介 陈帅:男,1987年生,硕士生,研究方向为雷达信号的压缩采样、并行计算等. 李刚:男,1979年生,助理研究员,研究方向为微波成像.通信作者:李刚gangli@tsinghua.edu.cn 张颢:男,1972年生,副教授,研究方向为雷达信号处理. 孟华东:男,1977年生,副教授,研究方向为雷达信号处理. 王希勤:男,1968年生,教授,研究方向为雷达系统与信号处理.
  • 相关文献

参考文献14

  • 1Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Candes E J and Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine. 2008, 25(2): 21-30.
  • 3Rilling G, Davies M E, and Mulgrew B. Compressed sensing based compression of SAR raw data[C]. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations,Saint Malo, France, 2009, ID 00369560.
  • 4Bhattacharya S, Blumensath T, and Mulgrew B, et al.. Fast encoding of synthetic aperture radar raw data using compressed sensing[C]. IEEE/SP 14th Workshop on Statistical Signal Processing, Madison, WI, USA, 2007: 448-452.
  • 5Li J, Xing M, and Wu S. Application of compressed sensing in sparse aperture imaging of radar[C]. APSAR 2009. 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xi'an China, 2009: 651-655.
  • 6Patel V M, Easley G R, and Healy D M, et al.. Compressed synthetic aperture radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 244-254.
  • 7Nvidia. CUDA Programming Guide Version 2.3.1 [EB/OL] http://developer.download.nvidia.com/compute/cuda/2_3/ toolkit/docs/NVIDIA CUDA Programming Guide 2.3.p df, 2010-03-05.
  • 8Borghi A, Darbon J, and Peyronnet S, et al.. A simple compressive sensing algorithm for parallel many-core architectures. Department of Mathematics, UCLA, CAM Report 08-64, September, 2008.
  • 9Andrecut M. Fast GPU implementation of sparse signal recovery from random projections [J]. Engineering Letters, 2009, 17(3): 151-158.
  • 10Sangkyun Lee S W. Implementing algorithms for signal and image reconstruction on graphical processing units. Computer Sciences Department, University of WisconsinMadison, Tech. Rep., November, 2008.

同被引文献71

  • 1赵锋,周颖,周杰,王雪松,肖顺平.相控阵雷达系统仿真实时性优化研究[J].系统仿真学报,2005,17(8):2001-2003. 被引量:5
  • 2卢建斌,胡卫东,郁文贤.多功能相控阵雷达实时任务调度研究[J].电子学报,2006,34(4):732-736. 被引量:57
  • 3赵锋,王雪松,肖顺平,赵艳丽.基于HLA的相控阵雷达系统仿真并行处理研究[J].系统仿真学报,2006,18(8):2170-2173. 被引量:10
  • 4颜学龙,余君.二维离散小波变换的FPGA实现[J].电视技术,2007,31(4):19-21. 被引量:4
  • 5Donoho D L. Compressed sensing [ J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289- 1306.
  • 6Baraniuk R, Steeghs P. Compressive radar imaging[C ]. IEEE Radar Conference, Boston, MA, April 17-20, 2007.
  • 7Li J. Xing M D, Wu S J. Application of compressed sensing in sparse aperture imaging of radar[ C ]. APSAR, Xi' an, China, Oct 26 - 30, 2009.
  • 8Sujit B, Thomas B, Bernard M, et al. Synthetic aperture radar raw data encoding using compressed sensing [ C ]. IEEE Radar Conference, Rome, Italy, May 26 -30, 2008.
  • 9Wang M. Raw SAR data compression by structurally random matrix based on compressive sampling [ C ]. APSAR, Xian, China, Oct 26- 30, 2009.
  • 10Parel V M, Easley G R, Healy D M, et al. Compressed synthetic aperture radar [ J ]. IEEE Journal of Selected Topic in Signal Processing, 2010, 4(2): 244-254.

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部