期刊文献+

基于支持向量机的区域运量滚动预测模型 被引量:6

Rolling forecasting model of regional transportaion volume based on support vector machine
在线阅读 下载PDF
导出
摘要 为寻求反映区域交通需求特性机理的运量预测方法,针对一般区域运量数据小样本的问题及其诱发因素的随机性和不可控制性,在分析区域交通需求特性及现有运量预测方法缺陷的基础上,采用以统计学习理论为基础的专门研究小样本情况下机器学习规律的支持向量机,建立了区域运量预测支持向量机模型.该模型通过预测值与统计值不断交互,实现区域运量的滚动预测,避免了建立和求解非线性函数的过程.以京津冀区域客运量预测为例,验证建立模型的合理性.结果表明,基于支持向量机的区域运量滚动预测较传统的预测方法提高了预测精度. To get the volume forecasting method which can reflect the mechanism of regional transportation demand characteristics,and considering the limited data of regional transportation volume and the stochastic and uncontrollable of the inducing factors,a rolling forecasting model of regional transportation volume was developed based on the Support Vector Machine and the analysis of the characteristics of regional transportation demand and the defects of existing forecasting methods.Through continuous interaction between predictive value and statistical value to update the training samples,the model realized the rolling forecasts of the regional transportation volume,and avoided the process of establishment and calculation of the nonlinear function.Taking the transportation volume of Beijing-Tianjin-Hebei area for instance,the rationality of the model has been validated and the results indicate that the model enhances the forecasting accuracy of regional volume,and has better prospects.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2011年第2期138-143,共6页 Journal of Harbin Institute of Technology
基金 国家发展和改革委员会交通运输司资助项目
关键词 区域交通需求特性 区域运量 支持向量机 滚动预测 characteristics of regional transportation demand regional transportation volume support vector machine rolling forecasting
作者简介 刘强(1980-),男,博士;liuqiang2007@tsinghua.org.cn 陆化普(1956-),男,教授,博士生导师 王庆云(1955-),男,教授,博士生导师
  • 相关文献

参考文献9

  • 1VAPNIK V N. The nature of statistical learning theory[M]. New York: Springer, 2000:73 -88.
  • 2边肇祺,张学工.模式识别[M].3版.北京:清华大学出版社,2010:73-89.
  • 3VANAJAKSHI L, LAURENCE R R. A comparison of the performance of artificial neural networks and support vector machines for the prediction of traffic speed [ C]// IEEE Intelligent Vehicles Symposium 2004. TX, USA: Texas A & M Univ, 2004:194 - 199.
  • 4VAPNIK V, LEVIN E, LE C Y. Measuring the VC - dimension of a learning machine [ J ]. Neural Computa tion,1994, 6(5): 851 -876.
  • 5VAPNIK V N. An overview of s.tatistical learning theory [J]. IEEE Transactions on Neural Networks, 1999, 10 (5) : 985 - 999.
  • 6SCHOLKOPF B, SUNG K K, BURGES C, et al. Com- paring support vector machines with gaussian kernels to radial basis function classifiers [ J]. IEEE Trans on Sig- nal Processing,1997, 45( 11 ) : 2758 -2765.
  • 7陈永义,俞小鼎,高学浩,冯汉中.处理非线性分类和回归问题的一种新方法(I)——支持向量机方法简介[J].应用气象学报,2004,15(3):345-354. 被引量:187
  • 8CRISTIANINI N, SHAWEOTAYLOR J. An introduc tion to support vector machines and other kernel - based learning methods [ M ]. Beijing: Publishing House of E lectronic Industry,2004:33 -45.
  • 9THEODORIDIS S, MAVROFORKIS M. Reduced con vex hulls: a geometric approach to support vector ma chines[J]. IEEE Signal Processing Magazine, 2007, 24(3) : 119 -122.

二级参考文献7

  • 1Vapnik V N.Statistical Learning Theory.John Wiley & Sons,Inc.,New York,1998.
  • 2Vapnik V N.The Nature of Statistical Learning Theory.Springer Verlag,New York,2000.(有中译本:张学工译.统计学习理论的本质.北京:清华大学出版社,2000.)
  • 3Cristianini N and Shawa-Taylor J.An Introduction of Support Vector Machines and Other Kernel_based Learning Methods.Cambridge University Press,2000.
  • 4Burges C J.A tutorial on support vector machines for pattern recognition.Data Mining and Knowledge Discovery,1998,2: 127~167.
  • 5Courant R and Hilbert D,Method of Mathematical Physics,Volume I.Springer Verlag,1953.
  • 6http://www.kernel-machines.org/
  • 7Scholkopf B,Burges Ch-J C and Smola A J,edited.Advances in Kernel Methods-Support Vector Learning.MIT Press,Cambridge,1999.

共引文献186

同被引文献46

引证文献6

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部