期刊文献+

基于遗传算法优化SVM的嵌入式网络系统异常入侵检测 被引量:19

ABNORMAL INTRUSION DETECTION FOR EMBEDDED NETWORK SYSTEM BASED ON GENETIC ALGORITHM OPTIMISED SVM
在线阅读 下载PDF
导出
摘要 由于传统嵌入式网络系统入侵检测方法难以获得较高的检测精度,提出基于遗传算法优化的支持向量机(GA-SVM)的网络入侵检测技术。支持向量机分类器能够较好地解决少样本、高维、非线性分类问题。然而,支持向量机训练参数的选择对其分类精度有着很大影响,遗传算法能够同时优化支持向量机的训练参数,采用遗传算法进行支持向量机的训练参数同步优化。实验结果表明,这种遗传算法优化的支持向量机分类入侵检测模型有着很高的检测精度。 As conventional intrusion detection method for embedded network system can't gain high detection accuracy,the network intrusion detection technology based on genetic algorithm optimised support vector machine(GA-SVM) is proposed in the paper.Support vector machine(SVM) classifier can well resolve non-linear classification problem with small training sample and high dimensions.However,the selection of training parameters of SVM has a great influence on classification accuracy.Genetic algorithm can consume less time to perform the optimisation of SVM parameters simultaneously.Thus,in the paper GA is used to synchronously optimise the SVM training parameters.Experimental results demonstrate that the GA-SVM classification intrusion detection model has very high detection accuracy.
出处 《计算机应用与软件》 CSCD 2011年第2期287-289,共3页 Computer Applications and Software
关键词 支持向量机 遗传算法 检测精度 入侵检测 Support vector machine Genetic algorithm Detection accuracy Intrusion detection
作者简介 姜春茂,副教授,主研领域:嵌入式系统,操作系统安全。
  • 相关文献

参考文献6

  • 1Chunlin Zheng,Ju Jiang,Mohamed Kamel.Intrusion detection using hierarchical neural networks[J].Pattern Recognition Letters,2005,26(6):779-791.
  • 2Richard P.Lippmann,Robert K.Cunningham.Improving intrusion detection performance using keyword selection end neural networks[J].Computer Networks,2000,34(4):597-603.
  • 3GuisongLiu,Zhang Yi,Shang ming Yang.A hierarchical intrusion detection model based on the PCA neural networks[J].Neurocomputing,2007,70(7-9):1561-1568.
  • 4Morteza Amini,Rascal Jalili,Hamid Reza Shahriari.RT-UNNID:A practical solutica to real-time network-based intrusion deteetica using unsupervised neural networks[J].Computers & Security,2006,25(6):459-468.
  • 5Martin Brown,Steve R Gunn,Hugh G Lewis.Support vector machines for optimal classification and spectral unmixing[J].Ecological Modelling,1999,120(2-3):167-179.
  • 6Emre Comak,Ahmet Arslan,Ibrahim Turko (g)lu.A decision support system based on support vector machines for diagnosis of the heart valve diseases[J].Computers in Biology and Medicine,2007,37(1):21-27.

同被引文献136

引证文献19

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部