摘要
利用相似度和欧式距离系数建立了描述数据样本间近似程度的归一化综合指标相似离度,并通过灰度数据向量集的相似离度描述图像的匹配程度.将SVM人脸检测、图像灰度值相似离度匹配和跟踪模板更新三种方法结合起来,设计了基于相似离度匹配的人脸跟踪算法.算法综合考虑了图像内颜色的空间位置和值信息,具有较高的精确性.实验表明,相似离度匹配算法可以在模拟图像灰度值矩阵中寻找到和模板数据最匹配的区域;在静态和动态人脸跟踪中具有较强的抗环境干扰能力,鲁棒性强.
A normalized composite index named analogue deviation was defined to describe a degree of approximation of data samples,based on the similarity and Euclidean distance coefficient.The matchability between images of the same face can be expressed via the analogue deviation of vector sets of image grayscale data.Combining the SVM face detection and tracking template updating with the analogue deviation matching of image grayscale,a new face tracking algorithm based on analogue deviation matching was proposed taking account of both the information on color values and color's spatial positions in image,thus making the algorithm more accurate.Experimental results showed that algorithm proposed can find out the best region matchable to template data in the grayscale matrix of simulated image.In addition,the algorithm is highly robust during static or dynamic face tracking because of its strong resistance to environmental interference.
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2011年第2期188-192,共5页
Journal of Northeastern University(Natural Science)
基金
国家自然科学基金资助项目(60674021)
关键词
相似离度
模板匹配
人脸跟踪
图像
灰度
analogue deviation
template matching
face tracking
image
grayscale
作者简介
张杨(1985-),女,河北秦皇岛人,东北大学博士研究生;
高立群(1949-),男,辽宁大连人,东北大学教授,博士生导师.