期刊文献+

一种模糊核聚类的彩色图像量化算法 被引量:1

A Color Image Quantization Algorithm Based on Fuzzy Kernel Clustering
在线阅读 下载PDF
导出
摘要 提出了一种基于模糊核聚类的彩色图像量化算法。首先用中位切割算法对图像进行初始量化,然后依据NBS距离与人类视觉对颜色差别的定量关系确定初始聚类中心,最后结合模糊核聚类方法对Munsell空间的每个像素进行聚类以实现对颜色的修改,从而完成图像的量化。仿真结果表明:所提算法在量化数目相同的情况下,量化效果明显优于中位切割算法和模糊C均值算法。 A color image quantization algorithm based on fuzzy kernel clustering was studied in this paper.Firstly,the original image was quantized by using the median-cut algorithm.Then,the initial clustering centers were determined adaptively on the relationship between the NBS distance and the color difference for human visual.Finally,the clustering center color values were modified by use of the fuzzy kernel clustering algorithm in the Munsell space in order to get the quantization effect.The simulation result shows that the presented algorithm has better quantization effect than the median-cut algorithm and fuzzy c-means algorithm in the same quantization number.
作者 马玉洁
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2011年第1期45-48,119,共4页 Journal of Henan University of Science And Technology:Natural Science
基金 河南省自然科学基金项目(092300410220)
关键词 图像 量化 模糊核聚类 中位切割 模糊C均值 Image Quantization Fuzzy kernel clustering Median-cut Fuzzy c-means
作者简介 马玉洁(1969-),女,河南睢县人,副教授,主要研究方向为图像处理等.
  • 相关文献

参考文献10

  • 1Hideo Kasuga. Color Quantization Using the Fast k-means algorithm [ J]. Systems and Computers, 2000,31 (8):1120 - 1128.
  • 2Ozdemir D, Akarun L. A Fuzzy Algorithm for Color Quantization of Images [ J ]. Pattern Recognition, 2002,35,1785 - 1791.
  • 3Heckbert P. Color Image Quantization for Frame Buffer Display[ J ]. Computer Graphics, 1982,16 (2) :297 -307.
  • 4Gervautz M, Purgathofer W. A Simple Method for Color Quantization: Octree Quantization [ C ]//Proceeding of Graphics Gems International. San Diego : Academic Press Professional, 1998,8 ( 6 ) : 219 - 230.
  • 5王向阳,胡峰丽,刘春辉.一种基于图像内容的自适应色彩量化算法[J].辽宁师范大学学报(自然科学版),2007,30(3):310-314. 被引量:5
  • 6伍忠东,高新波,谢维信.基于核方法的模糊聚类算法[J].西安电子科技大学学报,2004,31(4):533-537. 被引量:75
  • 7Ma W Y, Manjunath S. Edgeflow:A Framework for Boundary Detection and Image Segmentation [ J ]. IEEE Trans on hnage Processing ,2000,9 ( 8 ) : 1375 - 1388.
  • 8Gong Y H,Proietti G. Image Indexing and Retrieval Based on Human Perceptual Color Clustering[ C ]//The International Conference on Computer Vision. Mumbai, 1998.
  • 9张道强,陈松灿.在核诱导的鲁棒度量下的模糊C-均值与可能性C-均值算法[J].模式识别与人工智能,2004,17(4):390-395. 被引量:3
  • 10Wu K L, Yang M S. Alternative C-means Clustering Algorithm [ J ]. Pattern Recognition, 2002,35 (10) :2267 - 2278.

二级参考文献44

  • 1王向阳,杨红颖.基于离散余弦变换的自适应数字音频水印技术研究[J].小型微型计算机系统,2004,25(10):1825-1827. 被引量:20
  • 2周兵,沈钧毅,彭勤科.一种基于颜色聚类特征的色彩量化算法[J].小型微型计算机系统,2004,25(11):1998-2001. 被引量:10
  • 3Dave R N. Generalized Fuuzy C-shell Clustering and Detection of Circular and Elliptical Boundaries[J]. Pattern Recognition, 1992, 25(7): 639-641.
  • 4Krishnapuram R, Frigui H, Nasraui O. The Fuzzy C Quadric Shell Clustering Algorithm and the Detection of Second-degree[J]. Pattern Recognition Letters, 1993, 14(7): 545-552.
  • 5Girolami M. Mercer Kernel Based Clustering in Feature Space[J]. IEEE Trans on Neural Networks, 2002, 13(3): 780-784.
  • 6Burges C J C. Geometry and Invariance in Kernel Based Methods[A]. Advance in Kernel Methods-Support Vector Learning[C]. Cambridge: MIT Press, 1999. 89-116.
  • 7Scholkopf B, MIka S, Burges C, et al. Input Space Versus Feature Space in Kernel-based Methods[J]. IEEE Trans on Neural Networks, 1999, 10(5): 1000-1017.
  • 8Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981.
  • 9Bezdek J C. Convergence Theory for Fuzzy C-Means: Counterexamples and Repaires[J]. IEEE Trans on SMC, 1987, 17(4): 873-877.
  • 10Bezdek J C, Keller J M, Krishnapuram R, et al. Will the Real IRIS Data Please Stand Up?[J]. IEEE Trans on Fuzzy System, 1999, 7(3): 368-369.

共引文献80

同被引文献9

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部