期刊文献+

基于改进尺度的统计建模数据中离群点去除算法及应用 被引量:2

The Outlier Detection Algorithm and Its Application in the Statistical Monitoring Model Based on Modified Scaling
在线阅读 下载PDF
导出
摘要 鉴于传统鲁棒离群点去除算法不能准确估计过程采样数据的均值和协方差,导致基于PCA的统计建模监控影响故障诊断效果的局限性,本文提出一种综合CDCm与MVT的异常检测算法,可以克服上述缺陷。通过改进尺度方法对过程原始采样数据实现准确估计并进行中心化和标准化处理,运用采样数据中的最大变量值来计算距离,采用CDCm算法求出样本值与中心距离最短的正常点,利用获得的有效数据计算MVT迭代算法的第一个马氏距离,选取距离较小值对应的样本点进行迭代运算,最终去除离群点,获得正常数据。通过在发酵过程中的应用,并与传统鲁棒检测算法进行比较,实验与分析结果表明,该算法提高了异常检测的效率和准确度。 The traditional robust outlier removing algorithm can not obtain the accurate mean and standard deviation of the sample data. Thus it can decrease the ability of processing the fault diagnosis in the statistical monitoring model based on PCA.An outlier detection algorithm which combines CDCm(Closest Distance to Center, Maximum Variable Distance) and MVT (Ellipsoidal Multivariate Trimming) is proposed. It can overcome the above limitations,utilizing a modified scale to obtain the mean and standard deviation of the processing data,and can carry out the centering and standardization of it.Then the normal data of observations and the closest distance to the center are extracted from the modeling database by the CDCm algorithm of maximum variable distance.Using it,the first mahalanobis distance of MVT is obtained. The other normal data is gotten by the iterative calculation of the mahalanobis distance. A method is applied to detecting outliers from a fermentation process and comparing with the traditional robust outlier detection algorithms. The analysis and experimental results show that it can improve the outlier detecting efficiency and accuracy.
出处 《计算机工程与科学》 CSCD 北大核心 2011年第2期168-172,共5页 Computer Engineering & Science
基金 国家863计划资助项目(2007AA10Z241)
关键词 改进尺度 离群点 中心最短距离 椭球多变量整理 modified scaling outlier closest distance to center ellipsoidal multivariate trimming
作者简介 张新荣(1973-),男,陕西渭南人,硕士,讲师,研究方向为工业过程监控与故障诊断技术。E—mail:nn33@163.com 徐保国(1950-),男,江苏淮安人,教授,研究方向为轻工过程智能控制、智能仪表及现场总线技术、无线传感器网络及其控制。E-mail:xbg@jiangnan.edu.cn
  • 相关文献

参考文献9

  • 1Hawkins D.Identification of Outliers[M].London:Chap-man and Hall,1980.
  • 2Han J,Kamber M.Data Mining[M].New York:Mor-gan Kaufmann Publishers,2001.
  • 3Egan W J,Morgan S L.Outlier Detection in Multivariate Analytical Chemical Data[J].Analytical Chemistry,1998,70(11):2372-2379.
  • 4Pearson R K.Exploring Process Data[J].Journal of Process Control,2001,11(2):179-194.
  • 5Rousseeuw P J,Croux C.Alternatives to the Median Absolute Deviation[J].Journal of the American Statistical Association,1993,88:1273-1283.
  • 6Walczak B,Massart D L.Robust Principal Components Regression as a Detection Tool for Outliers[J].Chemometrics and Intelligent Laboratory Systems,1995,27(1):41-54.
  • 7Rousseeuw P J.Robust Regression and Outlier Detection[M].New York:Wiley,1987.
  • 8Chiang L H,Pell R J,Seasholtz M B.Exploring Process Data with the Use of Robust Outlier Detection Algorithms[J].Journal of Process Control,2003,13(5):437-449.
  • 9Helge H,Liang Y,Kvalheim O M.Trimmed Object Projections:A Nonparametric Robust Latent-Structure Decomposition Method[J].Chemometrics and Intelligent Laboratory Systems,1995,27(1):33-40.

同被引文献15

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部