期刊文献+

基于BP网络锌窑渣、水解渣共同熔炼预测系统的研究 被引量:1

THE STUDY ON FORECAST SYSTEM OF DEALING WITH ZINC-KILN SLAG AND GOETHITE RESIDUE BY BLAST FURNACE SMELTING BASE ON BP NEURAL NETWORK
在线阅读 下载PDF
导出
摘要 本文提出一种基于生产实践样本数据、BP神经训练和嫁接网络对锌窑渣、水解渣共同熔炼进行预测的模型。10组数据所构建的9-16-13-8BP神经网络训练模型,是以锌窑渣、水解渣中各成分作为输入参数,冰铜、烟尘和水淬渣相应成分作为预测目标。建立输入参数和预测目标之间的模拟关系,训练误差为10-4。预测网络是采用训练网络权值、阈值,和相同设计参数,在Matlab的GUI可视化界面中输入各成分的含量,实现各元素成分的预测,误差为10-4,人机交互性强。 A kind of prediction model was studied in this paper The model was based on zinc-kiln slag,Goethite Residue of common smelting production data.The inputs of the training BP Neural Network were zinc-kiln slag,Goethite Residue parameters of each component.The outputs are ingredients of matte,zinc oxide powder and pulverized slag.Using 10 groups sample data constructed a 9-16-13-8BP neural network training model.This model can establish the relationship between input parameters and predicts.The training model showed that the training error was 10-4.Forecasting network was based on weights and threshold of the training network.It can input zinc-kiln slag and goethite residue parameters of each component to forecast constitutes of matte,dust and pulverized slag in GUI interface.Using Matlab GUI visual interface can realize friendly man-machine interactive operation.
出处 《四川冶金》 CAS 2010年第6期28-34,42,共8页 Sichuan Metallurgy
关键词 锌窑渣 水解渣 共同熔炼 BP网络 预测系统 Zinc-kiln slag Goethite residue Common Smelting BP Neural Network Forecast system
作者简介 李永祥,男,工程师,从事有色生产冶炼与管理等工作。
  • 相关文献

参考文献4

二级参考文献9

共引文献18

同被引文献23

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部