期刊文献+

基于机器视觉的SMT焊膏印刷缺陷自动三维检测 被引量:5

SMT solder paste deposition 3D inspection based on machine vision
在线阅读 下载PDF
导出
摘要 在电子产品印刷电路板表面贴片安装生产中,传统的激光三角法进行焊膏印刷质量三维缺陷检测存在速度慢和精度低的不足,基于光栅投影相位测量轮廓术的机器视觉三维测量方法可以提高速度和精度,结合数字光处理投影仪产生正弦投影光栅,并通过机器视觉采集的二维图像改进性能、提高速度,较好解决了相位展开、阴影区域测量等难点。仿真实验结果表明,该方案速度快、精度高且具有很好的可靠性。 The solder paste deposit inspection which is an important in PCB surface mounted technology assembly needs both 2D analysis and 3D volume measurement.Conventional methods as laser triangulation suffered slow speed and low reliability,inspecting by grating projection phase shifting profilometry 3D scale fusion with 2D image features,which help phase measuring and unwrapping as well as shadows processing can improve performance.Experimental results show that the approach is fast,accurate and reliable.
作者 周贤善 罗兵
出处 《计算机工程与设计》 CSCD 北大核心 2010年第24期5363-5366,共4页 Computer Engineering and Design
关键词 焊膏缺陷检测 相位测量轮廓术 机器视觉 相位展开 阴影问题 solder paste inspection phase measuring profilometry information fusion phase unwrapping surface mounted technology
作者简介 作者简介:周贤善(1963--),男,湖北黄石人,硕士,副教授,研究方向为图像处理; 罗兵(1966--),湖北荆州人,博士,副教授,研究方向为人工智能和机器视觉。E-mail:xszhou@yangtzeu.edu.cn
  • 相关文献

参考文献14

  • 1周贤善,罗兵.基于ANN集成的贴片安装机器视觉检测[J].武汉理工大学学报,2008,30(1):113-116. 被引量:1
  • 2Durairaj R,Seman A,Ekere N N.Development of quality control (QC) tools for solder pastes used for flip chip assembly based on oscillatory tests[C].Proc of 1st Electronics System integration Technology Conf,2006:347-353.
  • 3Wilson A R,West A A,Velandia DMS,et a1.Characterization of printed solder paste excess and bridge related defects[C].Proc of 2nd Electronics SystemIntegration Technology Conf,2008:1305-1310.
  • 4Wu Huihui,Zhang Xianmin,Kuang Yongcong,et a1.A real-time machine vision system for solder paste inspection[C].Proc of IEEE/ASME Int Conf on Advanced Intelligent Mechatronics,2008:205-210.
  • 5Grantham Pang K H,Chu Ming-Hei.Automated optical inspection of solder paste based on 2.5D visual images[C].Proc of IEEE Int Conf on Mechatronics and Automation,2009:982-987.
  • 6Pang GKH,Chu M-H.Automated inspection of solder paste by directional LED lighting[C].Proc of IEEE Int Conf on Automation and Logistics,2008:232-237.
  • 7Silva L C,Petraglia A,Petraglia M R.Stereo vision system for real time inspection and 3D reconstruction[C].Proc of Int Symposium on Industrial Electronics,2003:607-611.
  • 8Luo Bing,Zhang Yun.Hierarchical classification for imbalanced multiple classes in machine vision inspection[C].Proc of 4th Int Conf on Image and Graphics,2007:536-541.
  • 9Malacara D.Optical shop testing[M].Hoboken,NJ:Wiley-Interscience,2007.
  • 10Hui Tak-Wai,Pang GK-H.3D profile reconstruction of solder paste based on phase shift profilometry[C].Proc of 5th IEEE Int.Conf.on Industrial Informatics,2007:165-170.

二级参考文献8

  • 1[1]Gallegos-Hernandez A,Ruiz-Sanchez F J,Villalobos-Cano J R."2D Automated Visual Inspection System for the Remote Quality Control of SMD Assembly"[A].Proc of IEEE 28th Annual Conf of Industrial Electronics Society[C].Sevilla:[s.n.],2002,(3):2219-2224.
  • 2[2]Ryu Y K,Cho H S.Visual Inspection Scheme for Use in Optical Solder Joint Inspection System[A].Proc of IEEE Int Conf on Robotics and Automation Minneapolis[C].Minnesota:[s.n.],1996,(14):3259-3264.
  • 3[3]Zhao Y,Gao Y,Yang X Z.A Survey of Neural Network Ensembles[A].Proc of Int Conf on Neural Networks and Brain[A].Beijing:[s.n.],2005:438-442.
  • 4[4]Webb A R.Statistical Pattern Recognition[M].Hoboken:John Wiley & Sons Inc,2004.
  • 5[5]Ueda N.Optimal Linear Combination of Neural Networks for Improving Classification Performance[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2000,(22):207-215.
  • 6[6]Pedrajas N G,Martinez C H,Boyer D O.Cooperative Coevolution of Artificial Neural Network Ensembles for Pattern Classification[J].IEEE Trans on Evolutionary Computation,2005,(9):271-302.
  • 7[7]Jimenez D.Dynamically Weighted Ensemble Neural Networks for Classification[A].Proc of IEEE Int Joint Conf on Neural Networks[C].Anchorage:[s.n.],1998,(1):753-756.
  • 8[8]Freund Y,Schapire R E.A Short Introduction to Boosting[J].Journal of Japanese Society for Artificial Intelligence,1999,(14):771-780.

同被引文献41

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部