期刊文献+

一种应用于机器人导航的激光点云聚类算法 被引量:11

A Laser Point Cloud Clustering Algorithm for Robot Navigation
在线阅读 下载PDF
导出
摘要 提出一种适用于机器人导航和环境理解的聚类算法,该算法用来处理各向异性分布的点云数据.算法的基本思想是基于点云的密度分布变化和空间位置分布的不同进行聚类,将信息聚类思想融入传统的DBSCAN算法,既保留了DBSCAN算法抗噪声能力强的优点,又结合点云的空间概率分布改善了聚类结果.算法采用自适应的实时参数估计方法克服全局参数的缺点.在真实环境数据集上的实验证明,所提出的算法可以将点云密度相似但是空间分布不同且互相连接的对象分割开,能处理高噪声点云数据. A clustering algorithm for robot navigation and environment understanding is proposed.It is designed to deal with anisotropic distribution point cloud.This algorithm performs clustering according to the variation of density and spatial distribution of points.It combines concepts of information clustering with traditional DBSCAN algorithm.On one hand it keeps antinoise ability,and on the other hand it improves the clustering result by incorporating spatial probability distribution of point cloud.The algorithm uses an adaptive online parameter computing method to conquer the disadvantage of constant global parameter.Experiments on real data set validate that the proposed algorithm can separate connected objects where point cloud has similar density but different spacial distribution,and it can deal with point clouds with high noise.
作者 袁夏 赵春霞
出处 《机器人》 EI CSCD 北大核心 2011年第1期90-96,共7页 Robot
基金 国家自然科学基金重大研究计划重点资助项目(90820306)
关键词 激光点云 聚类 地面机器人 导航 概率密度分布 laser point cloud clustering ground robot navigation probability density distribution
作者简介 通讯作者:袁夏,yxlucker@163.com 袁夏(1981-),男,博士生.研究领域:地面智能机器人,点云数据理解,环境建模. 赵春霞(1964-),女,博士,教授,研究领域,智能机器人,环境理解,计算机视觉。
  • 相关文献

参考文献12

  • 1Jain A K, Dubes R C. Algorithms for clustering data[M]. USA: Prentice Hall, 1988.
  • 2Pelleg D, Moore A W. X-means: Extending K-means with efficient estimation of the number of clusters[C]//7th International Conference on Machine Learning (ICML). San Francisco, CA, USA: Morgan Kaufmann, 2000: 727-734.
  • 3Zhang T, Ramakrishnan R, Livny M. BIRCH: An efficient data clustering method for very large datahases[C]//ACM SIGMOD International Conference on Management of Data. New York, USA: ACM, 1996: 103-114.
  • 4Guha S, Rastogi R, Shim K. CURE: An efficient clustering algorithm for large databases[C]//ACM SIGMOD International Conference on Management of Data. New York, USA: ACM, 1998: 73-84.
  • 5Hinneburg A, Keim D A. Optimal grid-clustering: Towards breaking the curse of dimensionality in high-dimensional clustering[C]//International Conference on Very Large Databases (VLDB). San Francisco, CA, USA: Morgan Kaufmann, 1999: 506-517.
  • 6Shavlik J W, Dietterich T G. Readings in machine learning[M]. San Francisco, CA, USA: Morgan Kaufmann, 1990.
  • 7Ester M, Kriegel H P, Sander J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//2nd International Conference on Knowledge Discov- ery and Data Mining (KDD-96). Menlo Park, CA, USA: AAAI Press, 1996: 226-231.
  • 8贾建华,焦李成.空间一致性约束谱聚类算法用于图像分割[J].红外与毫米波学报,2010,29(1):69-74. 被引量:19
  • 9马秀丽,焦李成.基于分水岭-谱聚类的SAR图像分割[J].红外与毫米波学报,2008,27(6):452-456. 被引量:25
  • 10Gachter S, Nguyen V, Siegwart R. Results on range image segmentation for service robots[C]//IEEE International Conference on Computer Vision Systems. Piscataway, NJ, USA: IEEE, 2006: 53-69.

二级参考文献14

  • 1孙伟,夏良正.一种基于形态学的红外目标分割方法[J].红外与毫米波学报,2004,23(3):233-236. 被引量:21
  • 2陶文兵,金海.基于均值漂移滤波及谱分类的海面舰船红外目标分割[J].红外与毫米波学报,2007,26(1):61-64. 被引量:10
  • 3Duda R O, Hart P E, Stork D G. Pattern classification [ M]. New York: A Wiley-Interscience Publication 2000.
  • 4Wang S, Siskind J M. Image segmentation with ratio cut [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 ( 6 ) : 675-690.
  • 5Shi J, Malik J. Normalized cuts and image segmentation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 ( 8 ) : 888--905.
  • 6Ding C H Q, He X, Zha H, et al. A min-max cut algorithm for graph partitioning and data clustering [ A ]. IEEE International Conference on Data Mining,2001 : 107--114.
  • 7Ng A Y, Jordan M I, Weiss Y. On spectral clustering: analysis and an algorithm [ A ]. Neural Information Processing System,2002,14:849--856.
  • 8Cao L, Li Fei-Fei. Spatially coherent latent topic model for concurrent object segmentation and classification [ A ]. IEEE International Conference on Computer Vision, 2007: 1-8.
  • 9Chen S, Zhang D. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure [ J ]. IEEE Transactions on Systems, Man and Cybernetics, Part B,2004,34(4) :1907-1916.
  • 10Dhillon I S, Guan Y, Kulis B. Weighted graph cuts without eigenvectors: a multilevel approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligeace,2007,29 (11) :1944-1957.

共引文献42

同被引文献454

引证文献11

二级引证文献493

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部