期刊文献+

一类微分对策制导律离散化执行方法研究

Digital implementation approach a class of differential game guidance law
原文传递
导出
摘要 针对一类bang-bang类型连续微分对策制导律,研究了在离散信息模式下的数字执行方法.基于对线性系统和终端脱靶量性能指标的推导,提出一种bang-bang制导律常值最优离散化执行方法,可实现对于传统最优采样保持离散化方法的最好近似,同时可以避免抖振,更易于执行.针对3种连续时间微分对策制导律DGL/0,DGL/1和DGL/C进行了仿真.该方法也很容易扩展到其他bang-bang类型控制律的研究领域. The digital implementation method was researched for a class of bang-bang control continuous differential game guidance law(DGL).Based on the derivation of linear system and terminal miss distance performance index,a constant optimal digital implementation method was presented for bang-bang guidance law.This method can realize the best approximation of sample and hold method and can avoid chatting of control command,so it was easy to implement.And it was applied to the simulations of three continuous differential game guidance laws:DGL/0,DGL/1 and DGL/C.This method was also easy to be extended to other research fields with bang-bang control.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第12期85-88,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 黑龙江省科技攻关计划资助项目(GZ06A104)
关键词 末制导 微分对策 BANG-BANG控制 数字执行 最优离散化 采样保持 terminal guidance differential game bang-bang control digital implementation optimal discretization sample and hold
作者简介 作者简介:花文华(1983-),男,博士研究生,E—mail:huawh6611@163.com.
  • 相关文献

参考文献10

二级参考文献18

  • 1EKCHIAN L K. An overview of lanchester type combat models for modem warfare[J]. AD-A-115389, 1982.
  • 2HELMBOLD R L. A modification of lanchester's equations[J]. Oper Res, 1975(13): 857- 859.
  • 3周慧钟,等.有翼导弹飞行动力学[M].航空专业教材编审组.
  • 4В.В.Малышев,А,И.Кибзун.Анализи синтез высоксокоточного упрабления летательными лппаратамии[M].МАШИНОСТРОЕНИЕ,1987.
  • 5А.А.Сизова О.А.Тоапегин.Синтез контура стабилизации углового положения летательного лппарата на основе теории дифференциальных игр[M]//Актуальные волросы ракетостроения Сборник статеииё Вцпуск 3.Санкт-Петербург 2004"188-193.
  • 6Shinar J,Rothstein Y,Bannar E.Analysis of three-dimensional optimal evasion with liberalized kinematics[J].Journal of Guidance,Control,and Dynamics,1979,2(5):353-360.
  • 7Outman S.On optimal guidance for homing missiles[J].Journal of Guidance and Control,1979,2(4):296-300.
  • 8Shinar J,Shima T.Robust missile guidance law against highly maneuvering targets[C]// Proceedings of the 7th IEEE Mediterranean Conference on Control and Automation,Haifa,Israel,1999:1548-1572.
  • 9Petrosjan L A.Differential game of pursuit:Series on optimization,Vol.2[M].Singapore:World Scientific Publishing,1993:169-177.
  • 10Oshman Y,Arad D.A new differential-game based guidance law using target orientation observations[C]// Proceedings of the AIAA Guidance,Navigation and Control conference,Monterey,CA,Aug.2002,AIAA-2002-3828.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部