期刊文献+

载人航天器热控系统并联回路的轻量化设计 被引量:3

The Lightweight Design for the Parallel Loops in the Thermal Control System of Manned Spacecraft
在线阅读 下载PDF
导出
摘要 为优化载人航天器热控系统的并联液体回路,减轻其质量,建立了并联回路传热和质量的数学物理模型;并以两支路系统为例,分析了其并联回路的轻量化设计问题,讨论了最优流量分配系数与流体流量、冷流体温度等参数之间的关系。研究发现,对并联回路而言,存在最佳管径与流量分配方案,使其质量最轻;随着流体总流量的增加,最优流量分配方案逐渐接近平均分配;给定流体总流量时,冷流体温度较低时最优的分配方式为平均分配,随着冷流体温度的提高,最优分配由支路散热任务、工作温度等因素决定。此外,还研究了支路管道长度和电源系统质量与泵功率之间的比例系数等因素对最优流量分配的影响。 This paper introduces a mathematical model which is set up to optimize the lightweight design of the parallel loops in the thermal control system of the manned spacecrafts. Take a two-branch parallel loop as an example, this paper analyzes the lightweight design of the parallel loop, investigates the relationship of the operational parameters, such as the optimized distribution ratio of the fluid, the flow rate of the fluid, and the temperature of the cold fluid. The results show that there is an optimized diameter of the pipes and an optimized distribution ratio of the fluid, which gives the loop a minimum weight. The results also show the optimized distribution ratio gradually gets to be the equal distribution with the increasing of the flow rate of the fluid. When the flow rate of the fluid is given, the optimized distribution ratio would be the equal distribution if the temperature of the cold fluid is low, while the optimized distribution ratio would not be the equal distribution but determined by the working temperature and the heat output of the branches if the temperature of the cold fluid gets bigger. Besides, some other parameters which could affect the optimized distribution ratio are also discussed in this paper, such as the length of the pipes and the proportionality coefficient between the weight of the electric power source and the pump power.
机构地区 清华大学
出处 《载人航天》 CSCD 2010年第3期37-43,共7页 Manned Spaceflight
关键词 载人航天器 热控系统 并联回路 轻量化设计 Manned Spacecraft Thermal Control System Parallel Loop Lightweight Design
作者简介 程雪涛(1983.09-),男,博士研究生,主要从事航天器热管理方面的研究。
  • 相关文献

参考文献4

二级参考文献15

  • 1吴晶,程新广,孟继安,过增元.层流对流换热中的势容耗散极值与最小熵产[J].工程热物理学报,2006,27(1):100-102. 被引量:37
  • 2徐士良.FORTRAN常用算法程序集[M].北京:清华大学出版社,1993..
  • 3侯增祺,胡金刚.航天器热控制技术[M].北京;中国科学技术出版社,2007.
  • 4Linnhoff B, Flower J R. Synthesis of heat exchanger networks: Systematic generation of energy optimal networks [J]. AIChEJ, 1978, 24: 633-642.
  • 5Linnhoff B, Hindmarsh E. The pinch design method for heat exchanger networks [J]. Chem Eng Sci, 1983, 38: 745 - 763.
  • 6Floudas C A, Ciric A R, Grossman I E. Automatic synthesis of optimum heat exchanger networks configuration[J]. AIChEJ, 1986, 32: 276-290.
  • 7Linnhoff B, Flower J R. Synthesis of Heat Exchanger Networks: Systematic Generation of Energy Optimal Networks. AIChEJ, 1978, 24:633-642
  • 8Linnhoff B, Hindmarsh E. The Pinch Design Method for Heat Exchanger Networks. Chem Eng Sci, 1983, 38: 745- 763
  • 9Floudas C A , CiricA R, Gro ssman I E. Automatic Synthesis of Optimum Heat Exchanger Networks Configuration. AIChEJ, 1986, 32:276-290
  • 10Bowman R A, Mueller A C, Nagle W M. Mean Temperature Difference in Design [J]. Trans ASME, 1940(62) : 283 - 294.

共引文献22

同被引文献33

  • 1付仕明,李劲东,潘增富.空间站温湿度控制子系统的动态分析[J].宇航学报,2008,29(2):683-687. 被引量:3
  • 2徐向华,任建勋,梁新刚.近地倾斜轨道航天器在轨热辐射分析[J].太阳能学报,2004,25(5):717-721. 被引量:7
  • 3黄家荣,范含林.载人航天器生活舱内湿度场的稳态数值模拟[J].宇航学报,2005,26(3):349-353. 被引量:11
  • 4侯增祺,胡金刚.航天器热控制技术[M].北京;中国科学技术出版社,2007.
  • 5Mark T H, David W P. Preliminary design of the space station internal thermal control system[J]. SAE Paper, 1985, 96(6) : 712 - 723.
  • 6Lyndon B. International space station familiarzation [ R/OL]. [1998 - 7 - 31 ] http://www, spaceref, com/iss/ops/iss. familiarization, pdf.
  • 7Patel V, Barido R, Johnson B, et al. Development of the internal thermal control system (ITCS) for international space station ( ISS ) [ C ]. 31st International Conference on Environmental Systems Orlando, Florida, July 9 - 12, 2001.
  • 8Vaccaneo P, Gottero M. The thermal environmental control (TEC) of the fluid science laboratory (FSL): a combined (water/air) thermal design solution for a columbus active rack [C]. 31st International Conference on Environmental Systems Orlando, Florida, July 9- 12, 2001.
  • 9Valenzano G, Lombardi S, Loddoni G, et al. ISS node 3 TCS analysis and design [ C ]. 29th International Conference on Environmental Systems Denver, Colorado, July 12 - 15, 1999.
  • 10Andish K. Predictions of freeze and thaw processes of international space station active thermal control system radiators [ C ]. 26th International Conference on Environmental Systems Monterey, California, July 8 - 11, 1996.

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部