期刊文献+

基于在线负载预测的动态集群节能配置策略 被引量:11

Dynamic Cluster Configuration Strategy for Energy Conservation Based on Online Load Prediction
在线阅读 下载PDF
导出
摘要 动态集群配置中的调节方式大多基于特定的物理实验模型而非数学模型描述。针对上述问题,提出基于预测的动态集群配置策略,根据网络中服务请求的历史信息,采用最小均方误差预测未来时刻服务请求情况,根据负载请求与集群处理能力决定服务器规模的增减,动态调节服务器集群中计算机的开启与关断。实验结果证明了该调度策略的可行性和优越性。 Previous dynamic cluster configuration methods are based on the specific physical experimental models without the description of mathematical models. Aiming at the problem, this paper proposes a prediction-based dynamic clusters configuration strategy, which uses least mean square to predict the situation of service requests in the future time according to the network historical information of service requests. On the basis of the load requests and the clusters processing power, it decides the servers' scale and dynamically adjusts the opening and shutdown of the computers in the server cluster. Experimental result verifies the feasibility and superiority of the schedule strategy.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第24期96-98,共3页 Computer Engineering
基金 国家"863"计划基金资助项目(2006AA01Z114) 国家自然科学基金资助项目(60802037) 新世纪优秀人才支持计划基金资助项目(NCET-08-0522) 中科院优秀博士论文获得者启动基金资助项目
关键词 服务器集群 动态集群配置 预测算法 LMS算法 节能 server cluster dynamic cluster configuration prediction algorithm LMS algorithm energy conservation
作者简介 刘斌(1984-),男,硕士研究生,主研方向:服务器集群节能,无线通信;E—mail:mobileice@mail.ustc.edu.cn 杨坚,副教授、博士; 赵宇,副研究员
  • 相关文献

参考文献6

  • 1Tsai Chang-Hao, Shin K G. Reumann J, et al. Online Web Cluster Capacity Estimation and Its Application to Energy Conservation[J] IEEE Transactions on Parallel and Distributed Systems, 2007, 18(7): 932-945.
  • 2Heath T, Diniz B, Can:era E V, et al. Energy Conservation in Heterogeneous Server Clusters[C]//Proc. of ACM SIGPLAN Symposium on Principles and Parallel Programming. [S. l.]: ACM Press, 2005: 186-195.
  • 3Egyhazy M W, Liang Yao. Predicted Sum: A Robust Measure-based Admission Control with Online Traffic Prediction[J]. IEEE Communications Letters, 2007, 11(7): 204-206.
  • 4高文宇,李绍华.基于LMS的网络流量预测[J].现代计算机,2008,14(12):78-81. 被引量:2
  • 5倪锦根,李锋.变步长NLMS自适应滤波算法研究[J].计算机应用与软件,2009,26(1):248-250. 被引量:9
  • 6王心一,沈庭芝,王晓华.数字可视电话系统中的G.168回声消除技术[J].计算机工程,2008,34(15):250-251. 被引量:3

二级参考文献25

  • 1罗小东,贾振红,王强.一种新的变步长LMS自适应滤波算法[J].电子学报,2006,34(6):1123-1126. 被引量:127
  • 2S. Basu, A. Mukherjee, and S. Kilvansky. Time Series Models for Internet Traffic. Technical Report GIT-CC-95-27, Georgia Institure of Technology, 1996
  • 3Y. Shu, Z. Jin, L. Zhang, L. Wang, O. Yang. Traffic Prediction Using FARIMA Models. In Proceedings of the 1999 IEEE International Conference on Communications, pp.891- 895, Vancouver, BC, Canada, June 6-10, 1999
  • 4Mark E.Crovella and Azer Bestavros, Self-Similarity in World Wide Web Traffic:Evidence and Possible Causes. IEEE/ACM Transactions on Networking, 5(6): 835-846, December 1997
  • 5W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. Self-Similarity through High-Variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level. IEEE/ACM Transactions on networking, 1997,5(1): 71-86
  • 6W.E. Leland, M.S. Taqqu, W. Willinger, and D.V. Wilson. On the Self- Similarity Nature of Ethernet Traffic (Extended Version). IEEE/ACM Transaction on Networking, 2(1):1- 15,1994
  • 7Vern Paxson and Sally Folyd. Wide-Area Traffic: The Failure of Poisson Modeling. IEEE/ACM Transaction on Networking, 3(3):226-244, June 1995
  • 8P. S. R. Diniz. Adaptive Filtering: Algorithms and Practical Implementation, Second Edition, Kluwer Academic Publishers, 2006
  • 9PMA Traces Archive. http://pma.nlanr.net/Special/auck8/20031210-210000.html
  • 10VINT Project U. C. Berkeley/LBNL, ns2: Network Simulator. http://www.isi.edu/nsnam/ns, 2007

共引文献11

同被引文献113

  • 1唐志芳,时海涛,鲁华祥,王守觉.系统级动态电源管理算法的研究[J].计算机工程与应用,2005,41(6):190-193. 被引量:6
  • 2程宏兵,杨庚.一种基于自动回归的改进网格主机负载预测模型[J].计算机应用,2005,25(11):2483-2485. 被引量:2
  • 3杨伟,朱巧明,李培峰,钱培德.基于时间序列的服务器负载预测[J].计算机工程,2006,32(19):143-145. 被引量:13
  • 4刘峥.嵌入式Web集群服务器节能机制的研究与实现[J].计算机工程,2007,33(13):138-140. 被引量:2
  • 5Rangan K. The Cloud Wars: $100+ billion at stake. Tech.rep, Merrill Lynch, May 2008.
  • 6Siegele L. Let It Rise: A Special Report on Corporate IT. The Economist (October 2008).
  • 7Natural Resources Defense Council Recommendations for Tier I ENERGY STAR Computer Specification. http://www. energystar.gov/ia/partners/prod_development/revisions/down loads/computer/RecommendationsTierlCompSpecs.pdf.
  • 8Kim KH, Beloglazov A, Buyya R. Power-aware provisioning of cloud resources for real-time services. In Proceedings of the 7th International Workshop on Middleware for Grids, Clouds and e-Science (MGC2009). Urbana Champaign, USA, December 2009.
  • 9Ge R, Feng X, Cameron KW. Performance-constrained Distributed DVS Scheduling for Scientific Applications on Power-aware Clusters. Proceedings of the ACM/IEEE SC 2005, Seattle, USA, November 2005.
  • 10Hsu CH, Feng W. A Power-Aware Run-Time System for High-Performance Computing. Proc. of Supercom- puting'05, November 2005.

引证文献11

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部