期刊文献+

Two mutually conjugated tripartite entangled states and their fractional Fourier transformation kernel 被引量:1

Two mutually conjugated tripartite entangled states and their fractional Fourier transformation kernel
在线阅读 下载PDF
导出
摘要 We newly construct two mutually-conjugate tripartite entangled state representations, based on which we propose the formulation of three-mode entangled fractional Fourier transformation (EFFT) and derive the transformation kernel. The EFFT's additivity property is proved and the eigenmode of EFFT is derived. As an application, we calculate the EFFT of the three-mode squeezed vacuum state. We newly construct two mutually-conjugate tripartite entangled state representations, based on which we propose the formulation of three-mode entangled fractional Fourier transformation (EFFT) and derive the transformation kernel. The EFFT's additivity property is proved and the eigenmode of EFFT is derived. As an application, we calculate the EFFT of the three-mode squeezed vacuum state.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期43-50,共8页 中国物理B(英文版)
基金 Project supported by the Specialized Research Fund for Doctoral Program of High Education of China the National Natural Science Foundation of China (Grant Nos. 10874174 and 10947017/A05)
关键词 tripartite entangled state three-mode entangled fractional Fourier transformation the technique of integral within an ordered product of operators tripartite entangled state, three-mode entangled fractional Fourier transformation, the technique of integral within an ordered product of operators
作者简介 Corresponding author. E-mail: jiangnq@wzu.edu.cn
  • 相关文献

参考文献24

  • 1Namias V 1980 J. Inst. Math. Appl. 25 241.
  • 2McBride A C and Kerr F H 1987 IMA J. Appl. Math. 39 159.
  • 3Ozaktas H M and Mendlovic D 1993 J. Opt. Soc. Am. A 10 1875.
  • 4Lohmann A W 1993 J. Opt. Soc. Am. A 10 2181.
  • 5Mendlovic D, Zalevsky Z, Dorsch R G, Bitran Y, Lohmann A W and Ozaktas H 1995 J. Opt. Soc. Am. A 12 2424.
  • 6Pellat-Finet P 1994 Opt. Lett. 19 1388.
  • 7Lohmann A W, Mendlovic D and Zalevsky Z 1996 Opt. Lett. 21 281.
  • 8Mendlovic D, Ozaktas H M and Lohmann A W 1994 Appl. Opt. 33 6188.
  • 9Mendlovic D, Zalevsky Z, Dorsch R G, Bitran Y, Lohmann A W and Dzakts H 1995 J. Opt. Soc. Am. A 12 2424.
  • 10Einstein A, Podolsky and Rosen B N 1935 Phys. Rev. 47 777.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部