期刊文献+

基于自组织特征映射的聚类集成算法 被引量:4

Clustering ensemble based on self-organizing feature map
在线阅读 下载PDF
导出
摘要 为改善单一聚类算法的聚类性能,提出一种基于自组织特征映射(SOM)的聚类集成算法。该算法利用多个具有差异性的聚类成员,将原始数据集转换成一个新的特征空间矩阵;然后计算各个聚类成员的聚类综合质量,并将其作为新特征空间矩阵的属性权重,最后利用SOM神经网络进行集成,产生最终的共识聚类结果。实验结果表明,与集成前的基聚类算法和其它聚类集成算法相比,该算法能够有效地提高聚类质量。 To improve the clustering performance ofa single clustering algorithm, a clustering ensemble algorithm based on self-organi- zing feature map is proposed. Firstly, the ordinary dataset is transformed into a new feature space matrix using different clustering solutions. Then the overall cluster quality is computed for each clustering solution as the weight of the attribute of the new feature space matrix. Finally, the consensus clustering result is generated by SOM neural network. The experimental results show that the proposed algorithm can effectively improve the clustering performance comparing with other clustering ensemble algorithms and the basis clustering algorithm before combination.
作者 谭维 杨燕
出处 《计算机工程与设计》 CSCD 北大核心 2010年第22期4885-4888,共4页 Computer Engineering and Design
关键词 聚类集成 自组织特征映射 特征空间矩阵 聚类综合质量 属性权重 clustering ensemble self-organizing feature map feature space matrix overall cluster quality weight of the attribute
作者简介 作者简介:谭维(1985-),男,湖北荆州人,硕士研究生,研究方向为计算智能和数据挖掘; 杨燕(1964-),女,安徽合肥人,博士,教授,CCF会员,研究方向为计算智能、群体智能和数据挖掘。E-mail:tanwei1103@126.com
  • 相关文献

参考文献2

二级参考文献24

  • 1杨燕,靳蕃,Mohamed Kamel.一种基于蚁群算法的聚类组合方法[J].铁道学报,2004,26(4):64-69. 被引量:39
  • 2李洁,高新波,焦李成.一种基于修正划分模糊度的聚类有效性函数[J].系统工程与电子技术,2005,27(4):723-726. 被引量:8
  • 3张惟皎,刘春煌,李芳玉.聚类质量的评价方法[J].计算机工程,2005,31(20):10-12. 被引量:61
  • 4普运伟,金炜东,朱明,胡来招.核模糊C均值算法的聚类有效性研究[J].计算机科学,2007,34(2):207-210. 被引量:28
  • 5韩家炜 Michelin K.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 6BONABEAU E, DORIGO M, THERAULAZ G. Swarm intelligence-from natural to artificial system [ M ]. New York : Oxford University Press, 1999: 1-21, 149-164.
  • 7ESTER M, ESTE M, KRIEGEL H, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[ C]//2nd Infl, Conf, on Knowledge Discovering in Databases and Data Mining (KDD-96). Portland: AAAI Press,1996 : 226-231.
  • 8LUMER E, FAIETA B. Diversity and adaptation in populations of clustering ants[ C]//3rd Ind. Conf. on simulation of adaptive behavior: from animals to animats 3. Cambridge : MIT Press, 1994:499-508.
  • 9TOPCHY A, JAIN A K, PUNCH W. A mixture model of clustering ensembles[ C] //SIAM Intl. Conf. on Data Mining.Orlando : ACM Press, 2004 : 379-390.
  • 10AYAD H, KAMEL M. Topic discovery from text using aggregation of different clustering methods [ C ] //Advances in artificial intelligence: 15th conference of the Canadian society for computational studies of intelligence. Berlin Heidelberg: Springer-Verlag, 2002: 161-175.

共引文献126

同被引文献36

  • 1吕强,俞金寿.基于粒子群优化的自组织特征映射神经网络及应用[J].控制与决策,2005,20(10):1115-1119. 被引量:12
  • 2孙啸,陆祖宏,谢建明.生物信息学基础[M].北京:清华大学出版社,2006:249-281.
  • 3刘洋,张雅杰.模糊-超图聚类模型在土地评价中的应用研究[J].武汉理工大学学报,2007,29(11):126-128. 被引量:7
  • 4孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1083
  • 5王松,夏绍玮.一种鲁棒主成分分析(PCA)算法[J].系统工程理论与实践,2010,33(8):124-132.
  • 6Agarwal P, Bra R, Claramunt C. A social and spatial network approach to the investigation of research communities over the world wide web [ C ] //4th International Conference on Geographic Information Science. Munster, GERMANY: Springer- Verlag, 2006:20 - 23.
  • 7Kernighan B W, Lin S. An efficient heuristic procedure for partitioning graphs [ J ]. Bell System Technical Journal, 1970, (49) :291 -307.
  • 8Fiduccia C, Mattheyses R. A linear - time heuristics forimproving network partitions [ C ]//Proc 19th Design Automation Conf, 1982 : 175 - 181.
  • 9Simon D. Biogeography-based optimization [J]. IEEE Transaction on Evolutionary Computation, 2008, 12 (6): 702 -713.
  • 10Vijay Kumar, Jitender Kumar Chhabra, Dinesh Kumar. Advances in computing communication and control [ M ]. Ber- lin: Springer Berlin Heidelberg, 2011:448-456.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部