期刊文献+

基于模糊支持向量机的文本分类 被引量:3

Text categorization method based on fuzzy support vector machine
在线阅读 下载PDF
导出
摘要 为了有效地利用信息技术发展而产生的海量信息,信息检索与数据挖掘得到了快速的发展,通过对传统支持向量机的特点分析,针对其在文本分类中的局限性,采用了一种基于二叉树的模糊支持向量机的多分类算法,通过实验证明该算法有更好的抗干扰能力和更好的分类效果。 In order to effectively use information technology generates huge amounts of information,information search and data mining has been rapid development,of which text categorization technology is the field of information search and data mining research focus and core technology,in recent years has been widespread attention. On the characteristics of the traditional support vector machine analysis,for its limitations in the text classification using a binary tree based on fuzzy support vector machine multi-classification algorithm,experiments show that the algorithm has better anti-interference capability and better results of classification.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2010年第5期974-977,共4页 Journal of Liaoning Technical University (Natural Science)
基金 辽宁省教育厅高等学校科学研究项目资助(202182054)
关键词 模糊支持向量机 文本分类 机器学习 fuzzy support vector machine text categorization machine learning
作者简介 包剑(1970-),女,辽宁阜新人,硕士,副教授,主要从事文本挖掘、知识发现的研究。
  • 相关文献

参考文献7

  • 1牛强,王志晓,陈岱,夏士雄.基于SVM的中文网页分类方法的研究[J].计算机工程与设计,2007,28(8):1893-1895. 被引量:22
  • 2苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:393
  • 3安金龙,王正欧,马振平.一种新的支持向量机多类分类方法[J].信息与控制,2004,33(3):262-267. 被引量:46
  • 4Park SB,Zhang BT.Co-Trained support vector machines for large scale unstructured document classification using unlabeled data and syntactic information. Information Processing Letters . 2004
  • 5Kim H,Howland P,Park H.Dimension reduction in text classification with support vector machines. Journal of Machine Learning Research . 2005
  • 6Fernandez J,Montanes E,Diaz I,Ranilla J,Combarro EF.Text categorization by a machine-learning-based term selection. Proc.of the Database and Expert Systems Applications(DEXA-04) . 2004
  • 7Lin Chun-Fu,Wang Sheng-De.Fuzzy Support Vector Machines. IEEE Transactions on Neural Networks . 2002

二级参考文献20

  • 1王建会,王洪伟,申展,胡运发.一种实用高效的文本分类算法[J].计算机研究与发展,2005,42(1):85-93. 被引量:20
  • 2李荣陆,王建会,陈晓云,陶晓鹏,胡运发.使用最大熵模型进行中文文本分类[J].计算机研究与发展,2005,42(1):94-101. 被引量:98
  • 3陈展荣,曾毅平.Web汉语料的智能抽取与词汇切分[J].计算机工程与设计,2005,26(6):1422-1424. 被引量:4
  • 4Bottou L, Cortes C, Denker J. Comparison of classifier methods:a case study in handwriting digit recognition [ A]. Preceedings of the 12th IAPR International Conference on Pattern Recognition [ C ]. Jerusalem: IEEE, 1994.77 ~ 82.
  • 5Platt J C, Cristianini N, Shawe-Taylor J. Large margin DAGs for multiclass classification [ A ]. Advances in Neural Information Processing Systems [C]. 2000.547 -553.
  • 6Vapnik V. Statistical Learning Theory [ M]. New York:Wiley,1998.
  • 7Crammer K , Singer Y. On the lesrnability and design of output codes for multiclass problems [A]. Proceedings of the Thirteenth Annual Conference on Computational Learning Theory [ C ]. SanFransisco:Morgan Kanfmann, 2000.35 ~46.
  • 8Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines. hines [ J ]. IEEE Transactions on Neural Networks, 2002,13(2) :415 -425.
  • 9边肇祺 张学工 等.模式识别[M].北京:清华大学出版社,2001..
  • 10Kreβel U. Pairwise classification and support vector machines [ A]. Advances in Kernel Methods - Support Vector Learning [C]. Cambridge, MA:MIT Press,1999.255 -268.

共引文献458

同被引文献15

  • 1史晶蕊,郑玉明,韩希.人工神经网络在文本分类中的应用[J].计算机应用研究,2005,22(10):213-216. 被引量:10
  • 2张玉芳,彭时名,吕佳.基于文本分类TFIDF方法的改进与应用[J].计算机工程,2006,32(19):76-78. 被引量:121
  • 3DEBOLE F, SCBASTIANI F. An analysis of the relative hardness of recuters-21578 subsets [J]. Journal of the American Society for Information Science and Technology,2004,56(6) :584-596.
  • 4AHN B S, CHO S S, KIM C. The integrated methodology of rough set theory and artificial neural network for business failure prediction[ J]. Expert Systems with Applications, 2000,18(2) :65-74.
  • 5Dalvi B B,Kshirsagar M,Sudarshan S.Keyword search on external memory data graphs[J].VLDB Endowment,2008,1(1): 1 189-1 204.
  • 6Venkatesh Ganti,He Yeye,Dong Xin.Keyword++:a framework to improve keyword search over entity database[J].VLDB Endowment, 2010,3(1):711-722.
  • 7Li G, Feng J,Wang J,et al.Effective keyword search for valuable LCAs over XML documeny[C]. ACM. CIKM: Lisboa,2007:30-241.
  • 8Cohen S,Mamou J,Kanza Y, et al.A semantic search engine for XML[C] VLDB.Berlin:VLDB Endowment,2003:45-256.
  • 9Guo L,Shao F,Boter C,et al.XRank:rankedkey2 word search over XML documenys[C]. SIGMOD.San diego:ACM,2003:16-227.
  • 10熊忠阳,黎刚,陈小莉,陈伟.文本分类中词语权重计算方法的改进与应用[J].计算机工程与应用,2008,44(5):187-189. 被引量:28

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部