期刊文献+

特征保持的点云精简技术研究 被引量:13

Research on Point Cloud Simplification with Preserved Features
在线阅读 下载PDF
导出
摘要 为了在保持特征的基础上有效地简化点云数据,提出了基于聚类的点云精简算法.对点云进行三维栅格剖分,在每个栅格中选取1个代表点作为初始类核心,然后将点云中其他数据点归入欧氏距离最近的初始类中,遍历各个类,若类内某两点的法向量偏差大于给定带宽则对该类进行迭代细分,并对各个类进行均值漂移处理,将得到的局部模态点取代该类,从而实现点云简化.以手机外壳、人头、麻花钻为典型实例,对具有不同表面特征的点云数据进行了验证.结果表明,该算法能对点云数据进行直接而有效的精简,在曲率变化大、附加特征多的表面仍能很好地保留原始模型的几何形状. To simplify the point cloud while preserving small features, a novel algorithm based on clustering is proposed. The whole point could is divided into a series of initial sub-clusters with the 3-D grid subdivision method, and in each initial sub-cluster one representative point is selected as the centroid. The points other than those representatives are distributed to their nearest ini- tial sub-cluster centroids according to Euclidean distance, and new clusters are generated. Traversing all new formed clusters, if the normal vector deviation of any two inner points is greater than the given threshold, the cluster is necessarily subdivided, then each cluster is processed iteratively by mean shift to obtain the local mode points, which are adopted to substitute the clusters. Some typical cases with various surface features, such as mobile shell, human-head sculpture and twisted drill, are chosen to verify this method. The result indicates that the new algorithm enables to reduce data directly and efficiently while maintaining the geometry of the original model, especially for the surfaces with sharp edges and complex additional features.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2010年第11期37-40,共4页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(50975219) 江苏省科技支撑计划资助项目(BE2008058)
关键词 点云简化 聚类 均值漂移 point cloud simplification clustering mean shift
作者简介 史宝全(1982-),男,博士生;梁晋(联系人),男,副教授.
  • 相关文献

参考文献7

  • 1LEE K H, WOO H, SUK T. Point data reduction using 3D grids [J]. Advanced Manufacturing Technology, 2001,18: 201-210.
  • 2SONG H, FENG H Y. A global clustering approach to point cloud simplification with a specified data reduction ratio [J]. Computer-Aided Design, 2008,40: 281-292.
  • 3洪军,丁玉成,曹亮,武殿梁.逆向工程中的测量数据精简技术研究[J].西安交通大学学报,2004,38(7):661-664. 被引量:61
  • 4王仁芳,张三元,叶修梓.基于相似性的点模型简化算法[J].浙江大学学报(工学版),2009,43(3):448-454. 被引量:8
  • 5COMANICIU D, MEER P. Mean shift: a robust approach toward feature space analysis [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2002, 24 (5) :603-619.
  • 6FUKUNAGA K, HOSTETLER L. The estimation of the gradient of a density function, with applications in pattern recognition [J]. IEEE Trans Info Theory, 1975,21:32-40.
  • 7BENTLEY J L. Multidimensional binary search trees used for associative searching [J]. Communications of the ACM, 1975,18(9) :509-517.

二级参考文献27

  • 1文志强,蔡自兴.Mean Shift算法的收敛性分析[J].软件学报,2007,18(2):205-212. 被引量:48
  • 2MOENNING C, DODGSON N A. Intrinsic point cloud simplification [C]// Proceedings of GraphiCon 2004. Moscow:[s. n.], 2004 : 1147 - 1154.
  • 3PAULY M,GROSS M, KOBBELT L P. Efficient simplification of point-sampled surfaces [C]// Proceedings of IEEE Visualization. Boston: ACM, 2002 : 163 - 170.
  • 4ALEXA M, BEHR J, COHEN-OR D, et al. Point set surfaces [C]// Proceedings of IEEE Visualization. San Diego: IEEE Computer Society, 2001: 21- 28.
  • 5LINSEN L. Point cloud representation [R]. Karlsruhe: University of Karlsruhe, 2001.
  • 6PAULY M, GROSS M. Spectral processing of pointsampled geometry[J]. Computer Graphics, 2001,35 (4) :379 - 386.
  • 7KALAIAH A, VARSHNEY A. Statistical point geometry [C ]// Proceedings of Eurographics Symposium on Geometry Processing. Aachen: Eurographics Association, 2003 : 107- 115.
  • 8YU Z W, WONG H S. An efficient local clustering approach for simplification of 3D point-based computer graphics models [C]// Proceedings of the IEEE International Conference on Multimedia and Expo. Toronto: IEEE, 2006 : 2065- 2068.
  • 9PAULY M, KEISER R, GROSS M. Multi-scale feature extraction on poin-sampled surfaces [J]. Computer Graphics Forum, 2003, 22(3) : 281 - 289.
  • 10SHIMIZU T, DATE H, KANAI S, et al. A new bilateral mesh smoothing method by recognizing features [C] //Proceedings of Ninth International Conference on CAD/CG'05. Hong Kong: IEEE Computer Society, 2005 : 281- 286.

共引文献66

同被引文献134

引证文献13

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部