期刊文献+

基于最大频繁路径的元数据聚类方法 被引量:1

Metadata Clustering Method Based on Maximal Frequent Path
在线阅读 下载PDF
导出
摘要 探讨元数据树的最大频繁路径以及实现元数据聚类的有效途径。构建元数据树后以最大频繁路径作为元数据树的公共特征,对相关路径赋权重并构建特征矩阵、计算元数据树的相似度,对元数据进行聚类。经实例分析,该方法通过减少参与聚类的路径数量和赋予路径权重,能够较好地提高元数据聚类效率和效果。 This paper presents an approach for metadata clustering based on maximal frequent path with a feature vector matrix. The metadata is depicted as a metadata tree. Then, maximal frequent sequences mining is conducted with the metadata tree according to the common features. In order to construct a feature vector matrix, it is necessary to weight the common features. The last step is to calculate the similarity between metadata trees for further clustering. Various examples in this study confirm that the presented approach can significantly improve the efficiency and effectiveness on metadata clustering by reducing the number of paths and endowing weights to paths.
作者 冯秀珍 陈旎
出处 《计算机工程》 CAS CSCD 北大核心 2010年第21期40-42,共3页 Computer Engineering
基金 北京市教委人才引进科研基金资助项目"基于互联网的信息资源共享模式研究"(05011019200701)
关键词 元数据聚类 元数据树 频繁路径 特征向量矩阵 metadata clustering metadata tree frequent path feature vector matrix
作者简介 冯秀珍(1956--),女,教授、博士,主研方向:信息服务,信息资源管理; 陈旎,硕士 E-mail:chennihehe@yahoo.com.cn
  • 相关文献

参考文献5

  • 1Leung Ho-Pong,Chung Fu-Lai,Chan S.On the Use of Hierarchical Information in Sequential Mining-based XML Document Similarity Computation[J].Knowledge and Information Systems.2005,7(4):476-498.
  • 2Kim Tae-Soon,Lee Ju-hong,Song Jae-Won.Semantic Structural Similarity for Clustering XML Documents[C]//Proc.of International Conference on Convergence and Hybrid Information Technology.[S.l.]: IEEE Press,2008: 552-557.
  • 3潘有能.XML文档自动聚类研究[J].情报学报,2006,25(2):215-220. 被引量:16
  • 4Nayak R,Xu Sumei.XCLS: A Fast and Effective Clustering Algorithm for Heterogenous XML Documents[C]//Proc.of the Pacific-Asia Conference on Knowledge Discovery and Data Mining.Singapore: [s.n.],2006: 292-302.
  • 5Tran T,Nayak R.Evaluating the Performance of XML Document Clustering by Structure Only[C]//Proc.of the 5th International Workshop of the Initiative for the Evaluation of XML Retrieval.Dagstuhl Castle,Germany: [s.n.],2006: 473-484.

二级参考文献13

  • 1潘有能,邓三鸿.基于XML和关联规则的Web挖掘研究[J].现代图书情报技术,2004(7):30-34. 被引量:9
  • 2Richi Nayak,Rebecca Witt & Anton Tonev.Data Mining and Xml Documents.Proceedings of the 2002 International Conference on Internet Computing,2002
  • 3Andrew Nierman,H.V.Jagadish.Evaluating Structural Similarity in XML Documents.WebDB 2002
  • 4Elisa Bertino,Giovanna Guerrini,Marco Mesiti,Luigi Tosetto.Evolving a Set of DTDs According to a Dynamic Set of XML Documents.EDBT Workshops,2002
  • 5Elisa Bertino,Giovanna Guerrini,Marco Mesiti.Matching an XML Document against a Set of DTDs.ISMIS,2002
  • 6Kaizhong Zhang,Rick Statman,Dennis Shasha.Simple Fast Algorithms for the Editing Distance Between Trees and Related Problems.SIAM Journal on Computing,1989,18(6):1245~1262
  • 7Yuan Wang,David J.De Witt,Jin-Yi Cai.X-Diff:An Effective Change Detection Algorithm for XML Documents.In the International Conference On Data Engineering (ICDE),2003,519~530
  • 8Chawathe,H.Garcia-Molina.Meaningful Change Detection in Structured Data.In Proceeding of the ACM SIGMOD International Conference on Management of Data,1996,26~37
  • 9S.Chawathe,A.Rajaman,H.Garcia-Molina,and J.Widom.Change Detection in Hierarchically Structured Information.In the Conference of Special Interest Group on Management of Data (SIGMOD),1996,493~504
  • 10Sigmod XML数据集.Available at:http://www.acm.org/sigmod/record/xml.2005-7

共引文献15

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部