期刊文献+

一种改进的基于轮廓特征拐点的遮挡车辆分离方法 被引量:4

An Improved Method for Vehicle Occlusion Segmentation Based on Contour Feature Points
在线阅读 下载PDF
导出
摘要 在传统的基于4类特征拐点的遮挡车辆分离方法的基础上进行改进,提出了一种基于8类特征拐点的分离方法.该方法以车辆常用的矩形模板为先验知识,首先对存在遮挡的连通区域提取边缘轮廓,并将轮廓上的特征拐点分为8类;然后在对相邻且同类的轮廓特征拐点进行合并的基础上,利用改进的车辆轮廓特征拐点的类型组合来实现遮挡车辆的识别和分离.仿真实验表明,本文所提出的新方法具有更好的鲁棒性和精确性,且方法简单,具有很高的实际应用价值. Based on the traditional method of four types feature points on contour, this paper proposes a new method of eight types feature points for the segmentation of vehicle occlusion. A rectangle region is assumed as the shape template of a vehicle. In this method, the first step is to extract the edge curve of the connected region, which has the phenomenon of vehicles occlusion, and then the feature points on contour were categorized into eight types. Subsequently, the feature points group, in which the feature points are the same kind and adjacent on contour, merged into an optimized one point according to the algorithm brought forward in the paper. At last, the vehicles were separated from each other by comparing every four adjacent feature points with the specific combination of the feature point types. Simulation results show that the new method of eight types feature points for the segmentation of vehicle occlusion is more robust, accurate, easily achieved and has good practical application merit.
出处 《北京交通大学学报》 CAS CSCD 北大核心 2010年第5期64-68,73,共6页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 河北省自然科学基金资助项目(F2010001105) 河北省教育厅科学研究项目资助(2008489)
关键词 车辆遮挡判别 轮廓特征拐点 车辆分离 拐点类型组合 vehicle occlusion detection contour feature points vehicle image segmentation feature point types specific combination
作者简介 马增强(1975-),男,河北石家庄人,副教授.email:06116272@bjtu.edu.cn 杨绍普(1962-),男,河北石家庄人,教授,博士生导师.
  • 相关文献

参考文献7

  • 1Marecenaro L, Ferrari M, Marchesottl L. Multiple Object Tracking Under Heavy Occlusions by Using Kalman Filter Based on Shape Matching[ C]//IEEE International Conference on Image Processing Rochester. New York: USA, 2002:341 - 344.
  • 2Ito Ken, Sakane Shigeyuki. Robust View-Based Visual Tracking with Detection of Occlusions[ C]///IEEE International Conference on Robotics and Automation. Seoul, Korea, 2001: 1207- 1213.
  • 3Kamijo Shunsuke, Matsushita Yasuyuki, Ikeuchi Katsushi. Occlusion Robust Tracking Utilizing Spatio-Temporal Markov Random Field Model[ C]//Proceedings of 15 International Conference on Pauern Recognition. Barcelona, Spain,2000:140 - 144.
  • 4Wu Ying, Yu Ting, Hua Guang. Tracking Appearances with Occlusions [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison, Wisconsin USA, 2003 : 789 - 795.
  • 5Hu Min, Hu Weiming, Tan Tieniu. Tracking People Through Occlusion [ C ]//Proceedings of 17 International Conference on Pattern Recognition. Cambridge: UK, 2004 : 724 - 727.
  • 6Ji Xiaopeng. Study on Video-Based Detection, Recognition and Tracking Method of Vehicle in ITS[D]. Qingdao: Ocean University of China, 2006.
  • 7Pang Clement Chun Cheong, Lam William Wai Leung, Yung Nelson Hon Ching. A Method for Vehicle Count in the Presence of Multiple-Vehicle Occlusions in Traffic Images[J]. IEEE Transaction on Intelligent Transportation Systems, 2007,8(3) :441 - 459.

同被引文献32

  • 1熊昌镇,任建新,李正熙.一种基于轮廓的车辆遮挡检测与分割方法[J].系统仿真学报,2009,21(S1):75-77. 被引量:8
  • 2DALAL N,TRIGGS B. Histograms of oriented gradients for human detection[A].2005.886-893.
  • 3VEERARAGHAVAN H,SCHRATER P,PAPANIKOLOPOULOS N. Switching Kalman filter-based approach for tracking and event detection at traffic intersection[A].2005.1167-1172.
  • 4Fan N.Object Classification and Occlusion Handling Using Quadratic Feature Correlation Model and Neural Networks[J].International Journal of Pattern Recognition and Artificial Intelligence,2011,25(2):287-298.
  • 5Ahra J,Jang Gil-Jin,Bohyung H.Occlusion Detection Using Horizontally Segmented Windows for Vehicle Tracking[J].Multimedia Tools and Applications,2015,74(1):227-243.
  • 6Matthew J L,Joseph L M.Vehicle Surveillance with Ageneric Adaptive 3D Vehicle Model[J].IEEETransactions on Pattern Analysis and Machine Intelligence,2011,33(7):1457-1469.
  • 7Yue Hengjun,Wu Jian,Cao Yanyan,et al.Research on Moving Vehicle Detection in the Presence of Occlusion[C]//Proceedings of the 9th International Symposium on Distributed Computing and Applications to Business Engineering and Science.Washington D.C.,USA:IEEE Press,2010:514-517.
  • 8Goo J,Aggarwal J K,Gokmen M.Tracking and Segmentation of Highway Vehicles in Cluttered and Crowded Scenes[C]//Proceedings of IEEE Workshop on Applications of Computer Vision.Washington D.C.,USA:IEEE Press,2008:1-6.
  • 9Huang C L,Liao Wen-Chieh.A Vision-based Vehicle Identification System[C]//Proceedings of the 17th International Conference on Pattern Recognition.Washington D.C.,USA:IEEE Press,2004:364-367.
  • 10Zhang Wei,Wu Q M J,Yang Xiaokang,et al.Multilevel Framework to Detect and Handle Vehicle Occlusion[J].IEEE Transactions on Intelligent Transportation Systems,2008,9(3):161-174.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部