期刊文献+

具有质体和抑制剂的非均匀恒化器模型的分歧 被引量:1

Bifurcation on the Plasmid-bearing and Plasmid-free Model in the Unstirred Chemostat with Inhibitor
在线阅读 下载PDF
导出
摘要 本文讨论了一类具有外加抑制剂的质体负载与质体自由物种竞争的非均匀恒化器模型共存解的存在性和稳定性。通过比较原理、分歧理论和线性稳定性理论,分析了由半平凡解发出的分歧解的全局结构和局部稳定性,解释了物种共存的现象。结果表明抑制剂有利于遗传选择的物种避免被质体自由的物种所消亡。 The existence and stability of coexistence solutions to a competition model between plasmid-bearing and plasmid-free organism in the unstirred chemostat with an external inhibitor are discussed.By the comparison principle,bifurcation theory and linear stability method,the global structure of the bifurcation solution from semitrivial solution and their local stability are analyzed, which explain the phenomenon of coexistence.The results indicate that the inhibitor can help the genetically altered(plasmid-bearing) organism to avoid 'capture' of the process by the plasmid-free organism.
出处 《工程数学学报》 CSCD 北大核心 2010年第5期838-844,共7页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10971124) 陕西省自然科学基础研究计划(2009JQ1007)~~
关键词 恒化器 质体负载 质体自由 共存解 全局分歧 chemostat plasmid-bearing plasmid-free coexistence solutions global bifurcation
作者简介 谢文昊(1978年10朋生),女,硕士,讲师.研究方向:偏微分方程数值解.
  • 相关文献

参考文献8

  • 1Ai S B.Periodic solutions in a model of competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor[J].J Math Biol,2001,42:71-94.
  • 2Hsu S B,Luo T K,Waltman P.Competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor[J].J Math Biol,1995,34:225-238.
  • 3Stephanopoulos G,Lapidus G.Chemostat dynamics of plasmid-bearing plasmid-free mixed recombinant cultures[J].Chem Eng Sci,1988,43:49-57.
  • 4Lenski R E,Hattingh S.Coexistence of two competitors on one resource and one inhibitor:a chemostat model based on bacteria and antibiotics[J].J Theoret Biol,1986,122:83-93.
  • 5Nie H,Wu J H.A system of reaction-diffusion equations in the unstirred chemostat with an inhibitor[J].International J Bifurcation and Chaos,2006,16(4):989-1009.
  • 6Wu J H,Nie H,Wolkowicz G S K.The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat[J].SIAM J Math Anal,2007,38(6):1860-1885.
  • 7Wu J H.Global bifurcation of coexistence state for the competition model in the chemostat[J].Nonlinear Anal,2000,39:817-835.
  • 8Smoller J.Shock Waves and Reaction-diffusion Equations[M].New York:Spring-Verlag,1983.

同被引文献17

  • 1Hsu S B, Waltman P. A survey of mathematical models of competition with an inhibitor [J]. Math Biosci, 2004, 187(1):53-91.
  • 2Hsu S B, Waltman P. On a system of reaction-diffusion equations arising from compe- tition in an unstirred chemostat [J]. SIAM J Appl Math, 1993, 53(4):1026-1044.
  • 3WuJH stat [J]. Global bifurcation of coexistence state for the competition model in the chemo- Nonlinear Anal, 2000, 39(7):817 835.
  • 4Zheng S N, Liu J. chemostat model [J] Coexistence solutions for a Appl Math Comput, 2003 reaction-diffusion system of unstirred 145(2-3):579 590.
  • 5Wang F Y, Hao C P, Chen L S. Bifurcation and chaos in a 'l'essiet type rood chain claemo- stat with pulsed input and washout [J]. Chaos Solutions Fractals, 2007, 32(4):1547- 1561.
  • 6Wu J H, Nie H, Wolkwicz G S K. The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat [J]. SIAM J Math Anal, 2007, 38(6):1860- 1885.
  • 7Nie H, Wu J H. A system of reaction-diffusion equations in the unstrirred chemostat with an inhibitor [J]. Internat J Bifur chaos, 2006, 16(4):989-1009.
  • 8Li L G. Coexistence theorems of steady states for predator-prey interacting systems [J]. Trans Amer Math Soc, 1988, 305(1):143-166.
  • 9Dancer E N. On the indices of fixed points of mappings in cones and applications [J]. J Math Anal Appl, 1983, 91(1):131-151.
  • 10Hale J K, Waltman P. Persistence in infinite dimensional systems [J]. SIAM J Math Anal, 1989, 20(2):388-395.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部