期刊文献+

CoTETA/C为氧还原催化剂的交流阻抗法研究

Electrochemical impedance spectroscopy study of CoTETA/C catalyst for oxygen reduction
在线阅读 下载PDF
导出
摘要 通过对具有不同阴极催化剂CoTETA/C载量的质子交换膜燃料电池(PEMFC)运行于不同状态下的交流阻抗分析,提出其等效电路,对各参数模拟表明,在阴极催化剂载量为2 mg/cm2时,随电池温度升高,欧姆阻抗R1和电荷转移阻抗R2呈下降趋势,提高阴极催化剂的载量能够增加电极催化活性,降低R2,但是由于催化剂层增厚,阴极产生的水难以排出,随着温度的升高电极产生部分水淹,R2反而增大,从而导致电池性能下降。电池温度上升,Nafion含水率升高,质子传递阻抗减小,有利于降低R1。在高放电电位时,R2较大,R2占主导地位;在中等放电电位时,R1和R2共同决定电池内阻;低放电电位时,电池处于急剧的浓差极化状态,气体和水的传质将对电池性能产生重要影响。 The electrochemical impedance spectroscopy on different loading of cathode catalyst CoTETA/C in proton exchange membrane fuel cell(PEMFC) at different operation conditions was studied.The proposed equivalent circuit shows that,when the loading of cathode catalyst is 2 mg/cm2,with the rise of the operation temperature,the ohm resistance R1 and charge transfer resistance R2reduce;the larger the cathode catalyst loading,the higher the catalytic activity of electrodes and the lower the charge-transfer resistance impedance R2.However,with the increasing of electrode catalyst layer thickness,the water generated in cathode is difficult to excrete.When the operation temperature rises,the electrode is flooded by water,and R2 increases,which lead to the decline of the battery performance.Improving the design of catalyst layer structure and increasing the displacement in the high current is conducive to anti-flooding and reduce the battery concentration polarization.
出处 《电源技术》 CAS CSCD 北大核心 2010年第10期1023-1027,共5页 Chinese Journal of Power Sources
基金 国家"863"专项计划(2007AA05Z145) 国家自然科学基金(20776085) 上海市科委基金(07JC14024 09XD-1402400)
关键词 质子交换膜燃料电池 非铂催化剂 交流阻抗 极化 proton exchange membrane fuel cell non-platinum catalyst electrochemical impedance polarization
作者简介 甘涛(1985-),男,湖北省人。硕士生,主要研究方向为燃料电池膜电极制备技术。 联系人:蒋淇忠副教授
  • 相关文献

参考文献17

  • 1HUYN Y T,GI Y Y, CROON P G,et al.Fabrication of a thin catalyst layer using organic solvents [J]. Journal of Power Sources, 2004,127 : 230-233.
  • 2LEFEVRE M,PROIETTI E, JAOUEN F,et al. Iron-Based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science, 2009,324 : 71-74.
  • 3ZHANG J L, ZHANG L, BEZERRA C,et al. EIS-assisted performance analysis of non-noble metal electrocatalyst (Fe-N/C)-based PEM fuel cells in the temperature range of 23 -80℃ [J].Electrochimica Acta, 2009, 54:1737-1743.
  • 4ZHANG H J, YUAN X X, WEN W, et al. Electrochemical performance of a novel CoTETA/C catalyst for the oxygen reduction reaction[J]. Electrochemistry Communications, 2009,11: 206-208.
  • 5ZHANG H J, YUAN X X, SUN L L, et al. Pyrolyzed CoN4-chelate as an electrocatalyst for oxygen reduction reaction in acid media[J]. International Journal Hydrogen Energy, 2009, 10:1016.
  • 6ZHANG J L, TANG Y H, SONG C J.PEM fuel cell relative humidity (RH) and its effect on performance at high temperatures[J].Journal of Power Sources, 2007,172:163-171.
  • 7YUAN X Z,WANG H I, Sun J C, et al. AC impedance technique in PEM fuel cell diagnosis-A review[J]. International Journal of Hydrogen Energy, 2007, 32: 4365-4380.
  • 8YAN X Q, HOU M, SUN L Y, et al. AC impedance characteristics of a 2 kW PEM fuel cell stack under different operating conditions and load changes [J].International Journal of Hydrogen Energy, 2007, 32:4358-4364.
  • 9GERTEISEN D,HAKENJOS A,SCHUMACHER J O.AC impedance modeling study on porous electrodes of proton exchange membrane fuel cells using an agglomerate model [J].Journal of Power Sources, 2007, 17: 346-356.
  • 10FOUQUET N, DOULET C,NOUILLANT C, et al. Model based PEM fuel cell state-of-health monitoring via ac impedance measurements[J].Journal of Power Sources, 2006, 159:905-913.

二级参考文献23

  • 1WANG Cheng (王 诚),MAO Zong-Qiang(毛宗强).XU Jing—Ming(徐景明)et al.Chem.J.Chinese Universities(高等学校化学学报)[J].2002.24(1):140-142.
  • 2Springer T. E., Raistrick I. D.. J. Electrochem. Soc. [J], 1989, 136(6): 1594-1603.
  • 3Raistrick I. D.. Electrochim. Acta[J], 1990, 35(10): 1579-1586.
  • 4Pourcelly G. , Oikonomou A. , Gavaeh C. et al.. J. Electroanal. Chem. [J], 1990, 287:43-59.
  • 5Parthasaraty A., Dave' B., Srinivasan S. et al.. J. Electrochem. Soc. [J], 1992, 139(6): 1634-1641.
  • 6Ahn S. , Tatarchuk B. T.. J. Electrochem. Soc. [J], 1995, 142(12): 4169-4178.
  • 7Perez J. , Gonzalez E, R. , Ticianelli E. A.. Electrochim. Acta[J], 1998, 44(8), 1329-1339.
  • 8Perez J. , Gonzalez E. R. , Ticianelli E. A.. J. Electrochem. Soc. [J], 1998, 145(7): 2307-2313.
  • 9Springer T. E., Zawodzinski T. A., Wilson M. S. et al.. J. Electrochem. Soc. [J], 1996, 143(2): 587-599.
  • 10Paganin V. A., Oliveira C. L. F., Ticianelli E. A. et al.. Electrochim. Acta[J], 1998, 43(24), 3761-3766.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部