期刊文献+

支持向量机与分类后验概率空间变化向量分析法相结合的冬小麦种植面积测量方法 被引量:11

Method of winter wheat planting area estimation based on support vector machine and post-classification changed vector analysis
在线阅读 下载PDF
导出
摘要 利用遥感手段提取农作物种植面积时,需要结合作物物候特征,以提高面积的提取精度。该文以北京市通州区西南部为试验区,以冬小麦为研究对象,利用多时相的环境减灾小卫星遥感影像数据,通过基于支持向量机二分法的分类后验概率空间变化向量分析法进行冬小麦种植面积遥感测量试验研究。研究结果表明:该文提出的方法测量结果总体精度、Kappa系数分别为95%、0.90,远高于支持向量机(SVM)分类后直接比较方法(总体精度91%,Kappa系数0.79);解决了实际应用中的变化阈值选取的主观性问题,该方法的频度直方图两极化现象使得变化阈值取值部分频度被压低摊平,阈值敏感度降低,变化阈值取值更为客观,一定程度上解决了阈值难以设定的问题;SVM二分法和变化向量分析的结合增强了对光谱的敏感性,能够监测不同季相上植被的长势变化,进而提高了农作物种植面积遥感测量的精度,同时对其他农作物种植面积测量提供了途径。 The crop phenology characristics can greatly improve estimation of planted area while using remote sensed technologies.Taking Southeast Beijing as the study area in this paper,the support vector machine (SVM) dichotomy model and post-classification changed vector analysis (PCVA) model were integrated to estimate winter wheat area.The results indicate that as follows:The overall pixel accuracy and Kappa coefficient resulted from this proposed method were 95% and 0.90,which were much better than those from post-classification comparison method (91% and 0.79).The combining of SVM and PCVA models also presented a good help on the selection of changing threshold value which tended to be subjective.Besides,with the polarization phenomenon of the frequency histogram in this method,it decreased the partial frequency of change threshold value and led to a lower threshold sensitivity,thus the determination of threshold value was more objective.The combining use of SVM and PCVA models was more sensitive to spectral changes,and improved the detection of crop growth change under different growing stages,as well as the estimating accuracy on winter wheat planted area.It is believed that this method also has a great potential for other crops planted area estimates.
机构地区 北京师范大学
出处 《农业工程学报》 EI CAS CSCD 北大核心 2010年第9期210-217,共8页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家自然科学基金(40871194) 国家高新技术重点规划项目(2006AA120101)
关键词 支持向量机(SVM) 作物 遥感 混合法 二分法 分类后验概率空间变化向量分析法(PCVA) 冬小麦 support vector machine (SVM) crops remote sensing mixed method dichotomy post-classification changed vector analysis (PCVA) winter wheat
作者简介 李苓苓,女,博士生。北京北京师范大学地表过程与资源生态国家重点实验室,100875。Email:lilinging@ires.cn 通信作者:张锦水,男,博士。北京北京师范大学地表过程与资源生态国家重点实验室,100875。Email:zhangjsh@ires.cn
  • 相关文献

参考文献16

  • 1Stefanov L W,Ramsey S M,Philip R.Christensen.Monitoring urban land cover change:An expert system approach to land cover classification of semiarid to arid urban centers[J].Remote Sensing of Environment,2001,77(2):173-185.
  • 2徐新刚,李强子,周万村,吴炳方.应用高分辨率遥感影像提取作物种植面积[J].遥感技术与应用,2008,23(1):17-23. 被引量:55
  • 3张峰,吴炳方,刘成林,罗治敏.利用时序植被指数监测作物物候的方法研究[J].农业工程学报,2004,20(1):155-159. 被引量:87
  • 4张明伟,周清波,陈仲新,周勇,刘佳,宫攀.基于MODIS时序数据分析的作物识别方法[J].中国农业资源与区划,2008,29(1):31-35. 被引量:26
  • 5Badhwar G D.Classification of corn and soybeans using multitemporal thematic mapper data[J].Remote Sensing of Environment,1984,16(2):175-181.
  • 6Conese C,Maselli F.Use of multitemporal information to improve classification performance of TM scenes in complex terrain[J].ISPRS Journal of Photogrammetry and Remote Sensing,1991,46(4):187-197.
  • 7Lenney P M,Woodcock E Cs,Collins B J,et al.The status of agricultural lands in Egypt:The use of multitemporal NDVI features derived from landsat TM[J].Remote Sensing of Environment,1996,56(1):8-20.
  • 8Wardlow D B,Egbert L S,Kastens H J.Analysis of time-series MODIS 250m vegetation index data for crop classification in the U.S[J].Central Great Plains.Remote Sensing of Environment,2007,108(3):290-310.
  • 9Byme G F,Crapper P F,Mayo K K.Monitoring Land-cover by principal component analysis of multitemporal Landsat data[J].Remote Sensing of Environment,1980,10(3):175-184.
  • 10Panigrahy S,Sharma.S A.Mapping of crop rotation using multidate Indian Remote Sensing Satellite digital data[J].ISPRS Journal of Photogrammetry and Remote Sensing,1997,52(2):85-91.

二级参考文献50

共引文献294

同被引文献188

引证文献11

二级引证文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部