期刊文献+

适用于实例密集型云工作流的调度算法 被引量:3

Scheduling algorithm for instance-intensive cloud workflow
在线阅读 下载PDF
导出
摘要 工作流调度算法仅适用于单个复杂工作流实例,而不适用于实例密集型云工作流实例,为此,提出了基于实例密集型的云工作流调度算法(MCUD)。MCUD算法先对待处理的一组工作流实例进行分类,再对分类后的同类工作流实例采用一种新的分配方法将用户指定的总最后期限分配到各任务;同时,在调度的过程中动态地调整后续任务的子最后期限。MCUD算法对同类工作流实例中的任务分配不同子最后期限,减小了资源竞争,提高了资源的利用率。仿真实验表明,MCUD相比于其他算法,在满足总的最后期限的前提下更进一步地降低了执行成本和执行时间。 The existing workflow scheduling algorithms are simply designed for single complex instance, unsuitable for scheduling instance-intensive cloud workflows. To address this problem, a new scheduling algorithm, named Minimum Total Cost Under User-designated Total Deadline (MCUD), was proposed based on multiple instances. For the workflow instances of the same type, after classification, MCUD algorithm distributed the user-designated overall deadline into each task with a new distribution method. In addition, MCUD algorithm adjusted the sub-deadline of successive tasks dynamically during the scheduling process. Instances of the same nature are given the sub-deadline distribution results of some difference, which can avoid the fierce competition of cheaper services and increase the efficiency of resource utilization. The simulation results show that MCUD algorithm further decreases the total execution cost and total execution time while meeting the user-designated deadline in comparison with other algorithms.
作者 晏婧 吴开贵
出处 《计算机应用》 CSCD 北大核心 2010年第11期2864-2866,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(90818028)
关键词 云工作流 资源调度 工作流实例 工作流调度 最后期限 cloud workflow resource scheduling workflow instance workflow scheduling deadline
作者简介 晏婧(1987-),女,四川南充人,硕士研究生,主要研究方向:网格工作流调度;(lisamary_613@163.com) 吴开贵(1966-),男,重庆人,副教授,博士,主要研究方向:网络安全、网格工作流调度。
  • 相关文献

参考文献11

  • 1WILLIAM G, EWING L, THOM S, et al. Condor: A distributed job scheduler [ M/OL]. [ 2009 - 11 - 02]. http://etutorials, org/ Linux + systems/cluster + computing + with + Linux/Part +III + Managing + Clusters/Chapter + 15 + Condor + A + Distributed + Job + Scheduler/.
  • 2LJU K, CHEN J, YANG Y, et al. A throughput maximization strategy for scheduling transaction intensive workflows on SwinDeW-G [ J]. Concurrency and Computation: Practice & Experience, 2008, 20(15) : 1807 - 1820.
  • 3MENASC D A, CASALICCHIO E. A framework for resource allocation in grid computing [ C]// Proceedings of 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems. Washington, DC: IEEE Computer Society, 2004:259-267.
  • 4YU J, BUYYA R. Scheduling scientific workflow applications with deadline and budget constraints using genetic algorithms [ J]. Scientific Programming Journal, 2006, 14(3/4) : 217 -230.
  • 5SAKELLARIOU R, ZHAO H, TSIAKKOURJ E, et al. Scheduling workflows with budget constraints, 05 - 22 [ R] Pisa, Italy: University of Pisa, Dipartimento di Informatica, 2005:347 -357.
  • 6YU J, BUYYA R, THAN C K. A cost-based scheduling of scientific workflow applications on utility grids [ C]// The 1st International Conference on E-Science and Grid Computing. Washington, DC: IEEE Computer Society, 2005:140 - 147.
  • 7NUDD G R, KERBYSON D J, PAPAEFSTATHIOU E, et al. PACE -- A toolset for the performance prediction of parallel and distributed systems [ J]. International Journal of High Performance Computing Applications, 2000, 14(3): 228-251.
  • 8BERMAN F, CHIEN A, COOPER K, et al. New grid scheduling and rescheduling methods in the GRADS project [ J]. International Journal of Parallel Programming, 2005, 33(2/3) : 209 - 229.
  • 9SEUNG H J, WU X F, VALERIE T, et al. Using performance prediction to allocate grid resources [ R]. [ S. l. ] : GriPhyN Project, 2004.
  • 10SMITH W, FOSTER I, TAYLOR V. Predicting application run times using historical information [ C]//Proceedings of the Workshop on Job Scheduling Strategies for Parallel Processing. Berlin: Springer-Verlag, 1998:122 - 142.

同被引文献30

  • 1Zhang C. An ant colony optimization approach to a grid workflow scheduling problem with various QoS requirements [J]. IEEE Transactions on Systems ,2009,39 ( 1 ) : 100 - 103.
  • 2Chen J J, Yang Y. Adaptive selection of necessary and sufficient checkpoints for dynamic verification of temporal constraints in grid workflow systems[J]. ACM Transactions on Autonomous and Adaptive Systems,2010,2 (2) : 1 - 25.
  • 3Moretti C, Bui H. An abstraction for data-intensive computing on campus grids [J]. IEEE Transactions on Parallel and Distributed Systems,2010,21 ( 1 ) :33 -46.
  • 4Liu K, Jin H, Chen J J, et al. A compromised-time-cost scheduling algorithm in SwinDeW C for instance-intensive cost-constrained workflows on cloud computing platform[J]. International Journal of High Performance Computing Applications,2010,24 (4) :445 - 456.
  • 5Ollveira D, Ogasawara E. An adaptive parallel execution strategy for cloud-based scientific workflows [ J ]. Concurrency and Computation: Practice and Experience, 2012,24 ( 13 ) : 1531 - 1550.
  • 6Buyya R,Abramson D,Giddy J. Economic models for resource management and scheduling in grid computing[J].Concurrency and Computation:Practice and Experience,2002,(13-15):1507-1542.
  • 7Van den Bossche R,Vanmechelen K,Broeckhove J. Cost~optimal scheduling in hybrid IaaS clouds for deadline constrained workloads[A].Miami,America,2010.228-235.
  • 8Van den Bossche R,Vanmechelen K,Broeckhove J. Cost~efficient scheduling heuristics for deadline constrained workloads on hybrid clouds[A].Athens,Greece,2011.320-327.
  • 9Abrishami S,Naghibzadeh M,Epema D H J. Deadlineconstrained workflow scheduling algorithms for Infrastructure as a service clouds[J].{H}Future Generation Computer Systems,2013,(01):158-169.
  • 10Shen J,Yang Y,Yan J. Adapting P2P based decentralised workflow system swindew-s with web service profile support[A].Chicago,2005.535-540.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部