摘要
针对浮选泡沫图像的纹理特征,采用多级支持向量机(MLSVMs)方法对浮选生产过程状态进行识别.首先基于灰度共生矩阵,提取浮选泡沫图像的诸如能量、熵及惯性等纹理特性参数来描述浮选泡沫的视觉特征;然后采用归一化后的纹理特征数据样本分别对多级支持向量机进行训练和识别.MLSVMs模型核函数参数采用改进惯性权重的粒子群算法进行优化.测试结果表明,所提出的方法在训练时间和识别正确率上具有较好的性能,可以满足浮选过程的实时监控要求.
According to the characteristics of the flotation froth image texture features,a method for the extraction of significant patterns based on multi-layer SVMs(MLSVMs) is introduced.Firstly,the numerical flotation froth image is analyzed to extract texture features,such as energy,entropy and inertia,based on grey-level co-occurrence matrix(GLCM) to provide qualitative information on the changes in the visual appearance of the froth.MLSVMs classifier,which is trained with the sampling data from above texture features,identifies out the three types of flotation production states.The particle swarm optimization(PSO) algorithm with improved inertia weights is adopted to optimize kernal function parameters of MLSVMs.The test results show that the proposed classifier has an excellent performance on training speed and correct recognization ratio,and meets the requirement for real-time monitor for the flotation process.
出处
《控制与决策》
EI
CSCD
北大核心
2010年第10期1523-1526,1535,共5页
Control and Decision
基金
辽宁省教育厅高等学校科研基金项目(20060432)
辽宁省教育厅创新团队基金项目(2008T091)
关键词
浮选过程
纹理特征
多级支持向量机
粒子群算法
Flotation process
Texture features
Multi-layer SVM
Particle swarm optimization
作者简介
王介生(1977-),男,山西介休人,副教授,博士,从事复杂工业过程建模的研究;
高宪文(1954-),男,辽宁盘锦人,教授,博士生导师,从事智能控制、复杂工业过程建模等研究.