摘要
This paper presents a novel high-speed low voltage differential signaling (LVDS) driver design for pointto-point communication. The switching noise of the driver was greatly suppressed by adding a charge/discharge circuit and the operating frequency of the circuit was also increased. A simple and effective common-mode feedback circuit was added to stabilize the output common-mode voltage. The proposed driver was implemented in a standard 0.35 μm CMOS process with a die area of 0.15 mm^2. The test result shows that the proposed driver works well at 2.2 Gbps with power consumption of only 23 mW and 21.35 ps peak-to-peak jitter under a 1.8 V power supply.
This paper presents a novel high-speed low voltage differential signaling (LVDS) driver design for pointto-point communication. The switching noise of the driver was greatly suppressed by adding a charge/discharge circuit and the operating frequency of the circuit was also increased. A simple and effective common-mode feedback circuit was added to stabilize the output common-mode voltage. The proposed driver was implemented in a standard 0.35 μm CMOS process with a die area of 0.15 mm^2. The test result shows that the proposed driver works well at 2.2 Gbps with power consumption of only 23 mW and 21.35 ps peak-to-peak jitter under a 1.8 V power supply.
作者简介
Corresponding author. Email: terry_cai_li@yahoo.com.cn