期刊文献+

基于人工鱼的全局优化文化算法 被引量:1

Cultural Algorithm based on Artificial Fish for Global Optimization
在线阅读 下载PDF
导出
摘要 针对基本人工鱼算法存在多样性缺失、搜索后期收敛速度较慢和搜索精度不高等不足,以及传统文化算法的框架模式,提出了基于人工鱼的全局优化文化算法.算法中首先人工鱼进行跳跃式全局搜索,当搜索过程较慢或处于停滞状态时,采用高斯变异算子对最优值进行变异,然后让人工鱼继续在最优值的周围搜索,可使结果精度更高.通过典型的基准测试函数和应用实例表明该算法收敛速度快、精度高,可有效用于全局优化问题的解决. Aiming at the shortcomings of artificial fish algorithm and the traditional framework of cultural algorithm,we propose a Cultural Algorithm based on Artificial Fish(AF-CA).Firstly artificial fish jumps for global search in this algorithm.When the search process is slow or in stagnant state,we employ gaussian mutation operator on the optimal value.Experimental results show that the algorithm is superior to basic AFSA and similar algorithms in quality and efficiency.
出处 《郑州大学学报(工学版)》 CAS 北大核心 2010年第5期106-110,共5页 Journal of Zhengzhou University(Engineering Science)
基金 河南省自然科学基金资助项目(2009A520025)
关键词 文化算法 人工鱼算法 局部搜索 全局优化 cultural algorithm artificial fish swarm algorithm local search global optimization
作者简介 作者简介:柴玉梅(1964-),女,河南郑州人,郑州大学副教授,硕士,主要从事人工智能、自然语言处理等研究工作,E-mail:ieymchai@zzu.edu.cn.
  • 相关文献

参考文献8

  • 1PANT M, THANGARAJ R, GROSAN C, et al. Hybrid differential evolution - Particle Swarm Optimization algorithm for solving global optimization problems [ C l//Intelligent Systems Design and Applications, Brazil. Berlin : Springer Verlag, 2007 : 285 - 289.
  • 2RADHA T, MILLLIE P, AJIH A, et al. Hybrid evolutionary algorithm for solving global optimization prob- lems[ C ]//Proceedings of the 4th International Conference on Hybrid ArtificialIntelligenceSystems, Spain, Belin :Springer Verlag,2009:310 - 318.
  • 3李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38. 被引量:886
  • 4黄华娟,周永权.求解全局优化问题的混合人工鱼群算法[J].计算机应用,2008,28(12):3062-3064. 被引量:10
  • 5CHEN C H, LIU Y C, LIN C J, etal. Ahybridofcooperative particle swarm optimization and cultural algorithm for neural fuzzy networks [ J ]. IEEE Transactions on Systems, Man and Cybernetics, Part C, 2009,39 (1) :238-245.
  • 6REYNOLDS R G. An introduction to cultural algorithm [ C ]//Proceedings of the 3rd Annual Conference on Evolutionary Programming, Califomia. Washington:IEEE Press ,1994 :131 - 139.
  • 7张梅凤,邵诚,甘勇,李梅娟.基于变异算子与模拟退火混合的人工鱼群优化算法[J].电子学报,2006,34(8):1381-1385. 被引量:82
  • 8LUMSDEN C J, WILSON E O. Genes, Mindand Culture [ M ]. Cambridge: Harvard University Press, 1981:208 - 209.

二级参考文献18

  • 1刘习春,喻寿益.局部快速微调遗传算法[J].计算机学报,2006,29(1):100-105. 被引量:37
  • 2张梅凤,邵诚,甘勇,李梅娟.基于变异算子与模拟退火混合的人工鱼群优化算法[J].电子学报,2006,34(8):1381-1385. 被引量:82
  • 3俞洋,殷志锋,田亚菲.基于自适应人工鱼群算法的多用户检测器[J].电子与信息学报,2007,29(1):121-124. 被引量:37
  • 4邵平凡,万程鹏.求解全局优化问题的遗传退火算法[J].计算机工程与应用,2007,43(12):62-65. 被引量:13
  • 5戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.
  • 6CSENDES T. Numerical experiences with a new generalized subinterval selection criterion for interval global optimization [ J]. Reliable Computing, 2003, 9(2) : 109 - 125.
  • 7HOLLAND J H; Adaptation in natural and artificial system [ M]. Cambridge, MA, USA: MIT Press, 1992: 211.
  • 8KENNEDY J, EBERHART R C. Particle swarm optimization [ C]// Proceedings of the IEEE International Joint Conference on Neural Networks. Washington: IEEE, 1995:1942-1948.
  • 9DORIGO M, GAMBARDELLA L M. Ant colony system: A cooperative learning approach to the traveling salesman problem[ J]. IEEE Transactions on Evolutionary Computation, 1997, 1 (1) : 53 - 66.
  • 10TU XIAO-YUAN. Artificial animals for computer animation: Biomechanics, locomotion, perception, and behavior [M]. Secaucus, NJ, USA: Springer-Verlag New York, 2000: 186.

共引文献921

同被引文献19

  • 1黄海燕,顾幸生,刘漫丹.求解约束优化问题的文化算法研究[J].自动化学报,2007,33(10):1115-1120. 被引量:40
  • 2XIDONG J, REYNOLDS R G. Using knowledge-based evolutionary computation to solve nonlinear con- straint optimization problem: a cultural algorithm approach [C]//IEEE Congress on Evolutionary Com- putation, 1999: 1672-1678.
  • 3MOLINA D, LOZANO M, SANCHEZ t M, HERRERA F. Memetic algorithms based on local search chains for large scale continuous optimization problems: MA-SSW-Chains [J]. Soft Computing, 2011, 15(11): 2201-2220.
  • 4ALl M, REYNOLDS R. The emergence of cultural hi- erarchical social networks in complex environments [J]. Artificial Intelligence: Methodology, Systems and Applications, 2012: 69-78.
  • 5RAEESI M N, KOBT! Z. A multiagent system to solve JSSP using a multi-population cultural algorithm [C]//Advances in Artificial Intelligence, 2012: 362- 367.
  • 6OCHOA A, GARCIA Y, YANEZ J, TEYMANOGLU Y. Using cultural algorithms to improve intelligent lo- gistics [C]//Hybrid Artificial Intelligence Systems, 2010: 127-134.
  • 7CHANJIN C. Knowledge-based approaches to self- adaptation in cultural algorithms [D]. Detroit, Miehi- gan: Waynestate University, 1997.
  • 8SALEEM S M. Knowledge-based solution to dynamic optimization problems using cultural algorithms [D]. USA: Wayne State University, 2001.
  • 9BEEERA R L, COELLO C A. Optimization with con- straints using a cultured differential evolution ap- proach [C]//Proceedings of the 2005 conference on Genetic and Evolutionary Computation, 2005: 27- 34.
  • 10ROBERT G, REYNOLDS R, PENG B, ALOMARI R S. Cultural evolution of ensemble learning for problem solving [C]//IEEE Congress on Evolutionary Com- putation, 2006: 1119-1126.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部