期刊文献+

THE JUMPING PHENOMENON OF THE DIMENSIONS OF COHOMOLOGY GROUPS OF TANGENT SHEAF 被引量:2

THE JUMPING PHENOMENON OF THE DIMENSIONS OF COHOMOLOGY GROUPS OF TANGENT SHEAF
在线阅读 下载PDF
导出
摘要 Let X be a compact complex manifold. Consider a small deformation π : X → B of X, the dimensions of the cohomology groups of tangent sheaf Hq(xt, Txt ) may vary under this deformation. This article studies such phenomena by studying the obstructions to deform a class in Hq(X, 5TX) with parameter t and gets a formula for the obstructions. Let X be a compact complex manifold. Consider a small deformation π : X → B of X, the dimensions of the cohomology groups of tangent sheaf Hq(xt, Txt ) may vary under this deformation. This article studies such phenomena by studying the obstructions to deform a class in Hq(X, 5TX) with parameter t and gets a formula for the obstructions.
作者 叶轩明
出处 《Acta Mathematica Scientia》 SCIE CSCD 2010年第5期1746-1758,共13页 数学物理学报(B辑英文版)
基金 partially supported by China-France-Russian mathematics collaboration grant,No.34000-3275100,from Sun Yat-Sen University
关键词 dimensions of cohomology groups of tangent sheaf deformation OBSTRUCTION Kodaira-Spencer class dimensions of cohomology groups of tangent sheaf deformation obstruction Kodaira-Spencer class
作者简介 E-mail: xuanming.ye@ens.fr
  • 相关文献

参考文献8

  • 1Kodaira K. Complex manifolds and deformation of complex structures//Kazuo Akao. Translated from the Japanese. New York: Springer, 1986.
  • 2Voisin C. Hodge Theory and Complex Algebraic Geometry Ⅰ. Cambridge: Cambridge University Press, 2002.
  • 3Bell S, Narasimhan R. Proper holomorphic mappings of complex spaces//Encyclopedia of Mathematical Sciences, Several Complex Variables Ⅵ. Berlin: Springer Verlag, 1991:1-38.
  • 4Ye X M. The jumping phenomenon of Hodge numbers. Pacific J Math, 2008, 235(2): 379-398.
  • 5Voisin C. Symetrie Miroir. Paris: Societe Mathematique de France, 1996.
  • 6Tian G. Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Peterson- Weil metric//Yau S T, eds. Mathematical Aspects of String Theory. Singapore: World Scientific, 1987: 629-646.
  • 7Nakamura I. Complex parallelisable manifolds and their small deformations. J Differential Geom, 1975, 10:85-112.
  • 8Cordero L A, Fernandez M, Gray A, Ugate L. Frolicher spectral sequence of compact nilmanifolds with nilpotent complex structure//Szenthe J. New Developments in Differential Geometry, Budapest, 1996. Dordrecht: Kluwer Acad Publ, 1999:77-102.

同被引文献10

  • 1SCHWEITZER M.Autour de la cohomologie de Bott-Chern[J/OL].arXiv:0709 3528vl,2007[2014-03-06].http://arxiv.org/abs/0709.3528.
  • 2LIN J Z,YE X M.The jumping phenomenon of the dimensions of Bott-Chern cohomology groups and Aeppli cohomology groups[J/OL].arXiv:1403 0285v2,2014[2014-03-06].http://arxiv.org/abs/1403.0285.
  • 3KODAIRA K.Complex manifolds and deformation of complex structures[M].New York:Springer,1986.
  • 4VOISIN C.Hodge theory and complex algebraic geometry I[M].London:Cambridge University Press,2002.
  • 5ANGELLA D.The cohomologies of the Iwasawa manifold and of its small deformations[J].J Geom Anal,2013,23(3):1355-1378.
  • 6YE X M.The jumping phenomenon of Hodge numbers[J].Pacific Journal of Mathematics,2008,235(2):379-398.
  • 7VOISIN C.Symetrie miroir[M].Paris:Societe Mathematique de France,1996.
  • 8FROLICHER A.Relations between the cohomology groups of Dolbeault and topological invariants[J].Proc Nat Acad Sci USA,1955:641-644.
  • 9BOTT R,CHERN S-S.Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections[J],Acta Math,1965:71-112.
  • 10AEPPLI A.On the cohomology structure of Stein manifolds[J],Proc Conf Complex Analysis(Minneapolis,Minn.,1964),1965:58-70.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部