期刊文献+

认知无线电中的混合认知引擎设计 被引量:1

Design of Hybrid Cognitive Engine in Cognitive Radios
在线阅读 下载PDF
导出
摘要 为了提高认知引擎的性能,更好地实现认知无线电系统参数的智能调整,设计了一种混合认知引擎,综合运用多种人工智能方法实现认知引擎的推理、学习、优化和决策等功能。分析了经典认知引擎模型和人工智能在认知引擎中的应用情况,构建了混合认知引擎的功能结构框图,讨论了混合认知引擎的工作机理和技术特点。分析表明,混合认知引擎具有较强的灵活性和鲁棒性。 To enhance the performance of cognitive engine (CE) and to better realize the intelligent parameters adjusting in cognitive radio(CR) system, a hybrid cognitive engine (HCE) is designed by using multiple artifi- cial intelligent methods synthetically for reasoning, learning, optimization, decision, and so on. Classical CE models and artificial intelligence for CE are analysed. The HCE function architecture block diagram is created, and the working mechanism and technology characteristics of HCE are discussed. The analysis shows that HCE has strong agility and robustness.
出处 《电讯技术》 北大核心 2010年第9期6-10,共5页 Telecommunication Engineering
基金 解放军电子工程学院博士创新基金资助项目~~
关键词 认知无线电 混合认知引擎 人工智能 cognitive radio(CR) hybrid cognitive engine(HCE) artificial intelligence
作者简介 焦传海(1983-),男,安徽肥东人,2008年获硕士学位,现为博士研究生,主要研究方向为通信信号处理、认知无线电等; 王可人(1957-),男,江苏镇江人,1986于解放军理工大学通信工程学院获硕士学位,现为教授、博士生导师,主要研究方向为无线通信、信号处理等; 徐云(1972-),男,安徽肥东人,2000年获硕士学位,现为讲师,主要研究方向为无线通信、信号处理等。
  • 相关文献

参考文献13

  • 1Haykin S. Cognitive radio:brain- empowered wireless communications[J] .IEEE Journal of SAC,2005,23(2):201 - 220.
  • 2Haykin S, Thomson J, Reed H. Spectrum sensing for cognitive radio[J] .Proceedings of the IEEE,2009,97(5):849 - 877.
  • 3Yucek T, Arslan H. A survey of spectrum sensing algorithms for cognitive radio applications [ J]. IEEE Communications Surveys & Tutorials, 2009, 11(1):116- 130.
  • 4Akyildiz I F, Lee W Y, Vuran M C, et al. Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey[J]. Computer Networks,2006,50(13) :2127 - 2159.
  • 5汪李峰,魏胜群.认知引擎技术[J].中兴通讯技术,2009,15(2):5-9. 被引量:7
  • 6Rondeau T W. Application of artificial intelligence to wireless communications [ D ]. Blacksburg: Virginia Polytechnic Institute and State University, 2007.
  • 7Mackenzie A B, Reed J H, Athanas P, et al. Cognitive radio and networking research at Virginia Tech[J]. Proceedings of the IEEE, 2009, 97(4) :660- 688.
  • 8Rieser C J. Biologically inspired cognitive radio engine model utilizing distributed genetic algorithms for secure and robust wireless communications and networking [ D]. Blacksburg: Virginia Polytechnic Institute and State University, 2004.
  • 9Rondeau T W, Rieser C J, Bostian C W. Cognitive radios with genetic algorithms: intelligent control of software defined radios[ C]//Proceedings of Software Defined Radio Technology Conference.Phoenix, AZ: [s.n.],200d: 1 - 6.
  • 10郑仕链,赵知劲,尚俊娜,杨小牛.基于模拟退火遗传算法的认知无线电决策引擎[J].计算机仿真,2008,25(1):192-195. 被引量:14

二级参考文献27

  • 1周殊,潘炜,罗斌,张伟利,丁莹.一种基于粒子群优化方法的改进量子遗传算法及应用[J].电子学报,2006,34(5):897-901. 被引量:33
  • 2Haykin S.Cognitive radio:brain-empowered wireless communications[J].IEEE Journal on Selected Areas in Communications,2005,23(2):201-220.
  • 3DamljanovicZ.Cognitive radio access discovery strategies[C] ∥Communication Systems,Networks and Digital Signal Processing,2008.
  • 4Yücek T,Arslan H.A survey of spectrum sensing algorithms for cognitive radio applications[J].IEEE Communications Surveys & Tutorials,2009,11(1):116-130.
  • 5Akyildiz I F,Lee W Y,Vuran M C,et al.Next generation dynamic spectrum access cognitive radio wireless networks:a survey[J].Computer Networks Journal,2006,1(50):2127-2159.
  • 6Neel J,Reed J,Mackenzie A.Cognitive radio network performance analysis[C] ∥Cognitive Radio Technology,2006.
  • 7RieserC J.Biologically inspired cognitive radio engine model utilizing distributed genetic algorithms for secure and robust wireless communications and networking[D].Blacksburg:Virginia Tech,2004.
  • 8RondeauT W,Rieser C J,Bostian C W.Cognitive radios with genetic algorithms:intelligent control of software defined radios[C] ∥SDR Forum,2004.
  • 9Zheng Shiqin,Yang Kongyu,Wang Xiufeng.Analysis of complete convergence for genetic algorithm with immune memory[C] ∥IEEE Proc.of ICNC-FSKD,2005:978-982.
  • 10John G P.Digital communication[M].4th ed.Beijing:Publishing House of Electronics Industry,2006:254-282.

共引文献52

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部