摘要
针对最近最久未使用(LRU)算法在高速网络中大流漏判率高的缺陷,提出一种基于多粒度最近最久未使用检测算法。该算法采用分层多粒度压缩计数机制对高速网络数据抽样,提高对长流的识别精度。基于实际的互联网数据进行仿真实验,结果表明,在给定条件下,该方法的内存占用量为LRU算法的50%,测量误差仅为LRU算法的10%。
Aiming at the lack of the high false negative ratio of Least Recently Used(LRU) algorithm in high-speed network traffic measurement, this paper proposes a new algorithm which is based on the Multi-Granularity Least Recently Used(MGLRU). The algorithm employs hierarchical multi-granularity compression counting mechanism for high-speed network data sampling, and improves the accuracy of the long-term flow detection. And based on the real Internet data, simulation results show that: in the given conditions, the algorithm uses about 50 percent of the memory consumption and has 10 percent of relative error compared with the LRU algorithm.
出处
《计算机工程》
CAS
CSCD
北大核心
2010年第17期141-143,146,共4页
Computer Engineering
基金
国家"863"计划基金资助项目(2008AA01A323)
关键词
流量测量
多粒度压缩计数
最近最久未使用
traffic measurement
multi-granularity compressed counting
Least Recently Used(LRU)
作者简介
张果(1985-),男,硕士研究生,主研方向:网络测量;E-mail:zhangguo1716@yahoo.com.cn
陈庶樵,副教授;
张震,博士研究生;
陈红梅,助教