期刊文献+

初始化独立的谱聚类算法 被引量:8

Initialization independent spectral clustering algorithm
在线阅读 下载PDF
导出
摘要 谱聚类作为一种新颖的聚类算法近年来受到模式识别领域的广泛关注。针对传统谱聚类算法对初始中心敏感的特点,通过引入对初值不敏感的k-调和平均算法,提出一种初始化独立的谱聚类算法。在人工数据和真实数据上的实验表明,相比于传统的k-means算法、FCM算法和EM算法,改进算法在稳定性和聚类性能上有了显著的提高。 Spectral clustering is used in pattern recognition extensively as a novel clustering algorithm in recent years.Due to the initialization dependence of original spectral clustering, this paper introduces the initialization insensitive k-harmonic means algorithm and proposes an initialization independent spectral clustering algorithm.Experiment on the artificial data set and the real data set shows that the improved algorithm has the remarkable enhancement in the stability and the clustering performance compared with traditional k-means algorithm,FCM algorithm and EM algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第25期134-137,共4页 Computer Engineering and Applications
基金 安徽省高等学校省级自然科学研究重点项目(No.KJ2009A150 No.KJ2010A283) 安徽省高校省级自然科学研究项目No.KJ2010B162 合肥师范学院院级科研项目(No.2010KJ05)~~
关键词 聚类 谱聚类 k-调和平均 初始化 clustering spectral clustering k-harmonic means initialization
作者简介 E-mail: pb_shi@ 163.com:施培蓓(1983-),硕士,研究方向:数据挖掘; 郭玉堂(1962-),教授,研究方向:模式识别、图像处理等; 胡玉娟(1962-),副教授,研究方向:现代教育技术。
  • 相关文献

参考文献5

  • 1Fowlkes C, Belongie S, Chung F, et al.Spectral grouping using the nystrom method[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,26(2):217-225.
  • 2Ekin A, Pankanti S, Hampapur A.Initialization-independent spectral clustering with applications to automatic video analysis[C]// Proc of IEEE ICASSP.Canada: [s.n.], 2004.
  • 3王玲,薄列峰,焦李成.密度敏感的半监督谱聚类[J].软件学报,2007,18(10):2412-2422. 被引量:95
  • 4Ng A Y, Jordan M I, Weiss Y.On spectral clustering: Analysis and an algorithm[C]//Advances in Neural Information Processing Systems.Cambrige,MA:MIT Press,2001:856-897.
  • 5Zhang Bin,Hsu M,Dayal U.K-harmonic means-A spatial clustering algorithm with boosting[C]//Proceedings of the 1st International Workshop on Temporal,Spatial,and Spatio-Temporal Data Mining-Revised Papers.London,UK:Springer-Verlag,2000: 31-45.

二级参考文献14

  • 1Yu SX, Shi J. Segmentation given partial grouping constraints. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004, 26(2): 173-183.
  • 2Hertz T, Shental N, Bar-Hillel A, Weinshall D. Enhancing image and video retrieval: Learning via equivalence constraint. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Madison: IEEE Computer Society, 2003.668-674.
  • 3Wagstaff K, Cardie C, Rogers S, Schroedl S. Constrained K-means clustering with background knowledge. In: Brodley CE, Danyluk AP, eds. Proc. of the 18th Int'l Conf. on Machine Learning. Williamstown: Morgan Kaufmann Publishers, 2001. 577-584.
  • 4Klein D, Kamvar SD, Manning CD. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In: Sammut C, Hoffmann AG, eds. Proc. of the 19th Int'l Conf. on Machine Learning. Sydney: Morgan Kaufmann Publishers, 2002. 307-314.
  • 5Wagstaff K, Cardie C. Clustering with instance-level constraints. In: Langley P, ed. Proc. of the 17th Int'l Conf. on Machine Learning. Morgan Kaufmann Publishers, 2000. 1103-1110.
  • 6Zhou D, Bousquet O, Lal TN, Weston J, Scholkopf B. Learning with local and global consistency. In: Thrun S, Saul L, SchSlkopf B, eds. Advances in Neural Information Processing Systems 16. Cambridge: MIT Press, 2004. 321-328.
  • 7Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000,22(8): 888-905.
  • 8Gu M, Zha H, Ding C, He X, Simon H. Spectral relaxation models and structure analysis for k-way graph clustering and bi-clustering. Technical Report, CSE-01-007, Penn State University, 2001.
  • 9Ng AY, Jordan MI, Weiss Y. On spectral clustering: Analysis and an algorithm. In: Dietterich TG, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems (NIPS) 14. Cambridge: MIT Press, 2002, 894-856.
  • 10Meila M, Xu L. Multiway cuts and spectral clustering. Technical Report, 442, University of Washington, 2004.

共引文献94

同被引文献48

  • 1刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论与实践,2005,25(6):54-58. 被引量:122
  • 2张利彪,周春光,马铭,刘小华,孙彩堂.基于粒子群优化算法的模糊C-均值聚类[J].吉林大学学报(理学版),2006,44(2):217-222. 被引量:27
  • 3朱强生,何华灿,周延泉.谱聚类算法对输入数据顺序的敏感性[J].计算机应用研究,2007,24(4):62-63. 被引量:7
  • 4边肇祺,张学工.模式识别[M].第2版.北京:清华大学出版社,2003.
  • 5边肇祺,张学工.模式识别[M].2版.北京:清华大学出版社,2003.
  • 6TAN S B ,CHENG X Q,GHANEM M M,et al. A novel refinement approach for text categorization [ C ]//Proc of the 14th ACM CIKM. [ S. l. ] :ACM Press,2005:469-476.
  • 7SHAWE-TAYLOR J, CRISTIANINI N. Kernel methods for pattern analysis [ M ]. Cambridge : Cambridge University Press,2004.
  • 8DUDA R O,HART P E ,STORK D G. Pattern classification[ M]. 2nd ed. New York:Wiley-Interscience Publishers,2000.
  • 9Tan S B, Cheng X Q, Ghanem M M,et al. A Novel Refine- ment Approach for Text Categorization[C]//Proe of the 14th ACM CIKM 2005. ACM Press,2005:469-476.
  • 10Shawe Taylor J, Cristianini N. Kernel Methods for Pattern Analysis[J]. Cambridge:Cambridge University Press,2004.

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部