期刊文献+

基于高光谱和PLS-LS-SVM的冬小麦叶绿素含量检测 被引量:5

Prediction of Chlorophyll Content of Winter Wheat Based on Hyperspectral Technology and PLS-LS-SVM
在线阅读 下载PDF
导出
摘要 定量测定小麦叶片叶绿素含量在小麦估产、农情监测等方面具有重要意义。本研究验证高光谱成像技术结合偏最小二乘—最小二乘支持向量机(PLS-LS-SVM)建模方法预测大田冬小麦叶绿素含量的可行性。首先利用所搭建高光谱成像系统以线扫描方式获取大田冬小麦叶片反射光谱,进而得到其立方体图像数据,并在小麦叶片光谱图像上选择感兴趣区域计算出光谱平均反射率值。为保证PLS-LS-SVM模型的鲁棒性和预测稳定性,首先通过PLS方法解决多重共线性问题并将输入变量维数减至4维,然后利用LS-SVM进行训练建模。所建叶绿素含量预测模型的决定系数达R2=0.8459,预测均方根误差RMSEV=0.4370。研究结果表明,基于高光谱成像系统,采用PLS-LS-SVM建立模型用来预测大田冬小麦叶绿素含量是完全可行的。 The main objective was to assess the possibility of predicting biochemical chlorophyll content of field winter wheat using hyperspectral images technology coupling with partial least-squares least square support vector machines ( PLS-LS-SVM) modeling method. Firstly,after the 316 scan line images were acquired,the cube image data was constructed and the region of interest ( ROI) was selected,then after the average reflected pixel intensity has been acquired,the PLS method was used to settle the co-linearity of spectra and to reduce the dimension of variables; then the least square support vector machines ( LS -SVM) was used as the modeling method,the determination coefficient( R2) between the prediction value and the value obtained using the PLS-LS-SVM modeling method was R^2 = 0. 8459,and the root mean square errors of external validation ( RMSEV) was 0. 4370. The results demonstrated that using our hyperspectral imaging system coupling with PLS-LS-SVM modeling method,we can get a fairly good result. All of these indicated that using the hyperspectral imaging method combined with the relative modeling means,we can predict chlorophyll content of winter wheat precisely.
出处 《农机化研究》 北大核心 2010年第9期170-175,共6页 Journal of Agricultural Mechanization Research
基金 国家"863"高技术计划项目(2006AA10A308 2006AA10A305-1) 国家"十一五"科技支撑计划项目(2007BAD89B04)
关键词 冬小麦 叶绿素含量 高光谱成像 偏最小二乘 最小二乘支持向量机 winter wheat chlorophyll content yyperspectral imaging partial least-squares( PLS) least square sup-port vector machines ( LS -SVM)
作者简介 王伟(1975-),男,山东宁阳人,讲师,博士,(E—mail)playerwxw@cau.edu.cn。
  • 相关文献

参考文献11

  • 1孟卓强,胡春胜,程一松.高光谱数据与冬小麦叶绿素密度的相关性研究[J].干旱地区农业研究,2007,25(6):74-79. 被引量:14
  • 2张金恒,王珂,王人潮.高光谱评价植被叶绿素含量的研究进展[J].上海交通大学学报(农业科学版),2003,21(1):74-80. 被引量:60
  • 3赵祥,刘素红,王培娟,王锦地,田振坤.基于高光谱数据的小麦叶绿素含量反演[J].地理与地理信息科学,2004,20(3):36-39. 被引量:53
  • 4Arnon,D.L.Copper enzymes in isolated chloroplasts.Polyphenoloxidae in Beta vulgaris[J].Plant Physiology,1949,24(1):1-15.
  • 5吉海彦,王鹏新,严泰来.冬小麦活体叶片叶绿素和水分含量与反射光谱的模型建立[J].光谱学与光谱分析,2007,27(3):514-516. 被引量:66
  • 6Jongschaap,R.E.E.,R.Booij.Spectral measurements at different spatial scales in potato:relating leaf,plant and canopy nitrogen status[J].Int.J.Appl.Earth Observ.Geoinform,2004,5:205-218.
  • 7Vianney H.,G.Martine,M.Bruno.Elaboration of a nitrogen nutrition indicator for winter wheat based on leaf area index and chlorophyll content for making nitrogen recommendations[J].Europ.J.Agronomy,2007,27:1-11.
  • 8Kim,M.S.,C.S.T.Daughtry,E.W.Chappelle.The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation(Apar)[M].In 6th Symp.on Physical Measurements and Signatures in Remote Sensing,1994.
  • 9Gitelson,A.A.,Y.Gritz,M.N.Merzlyak.Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J].Journal of Plant Physiology,2003,160(3):271-282.
  • 10Lu R,Chen Y R,Park B,Choi K H.Hyperspeetral inaging for detecting[C] //ASAE Paper NO.993120,1999:99-3120.

二级参考文献56

共引文献191

同被引文献102

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部