期刊文献+

具有脉冲扰动的比率相关功能性反应捕食者-食饵扩散模型的持续生存和周期解(英文)

Permanence and Periodicity of a Diffusive Ratio-dependent Predator-prey Model with Impulsive Perturbations
在线阅读 下载PDF
导出
摘要 本文考虑一类具有脉冲扰动的比率相关的捕食者-食饵扩散模型,利用比较原理研究了这类系统的持续生存和灭绝性,通过将脉冲反应扩散方程转化为相应的算子方程,并证明了解在适当空间的紧性,得到了周期解的存在性、唯一性和全局稳定性.最后分析了脉冲效应对系统性态的影响. This paper deals with a diffusive ratio-dependent predator-prey model with impulsive perturbations. The permanence and extinction of the system are investigated by comparison principles. The existence, uniqueness and globally asymptotic stability of positive periodic solutions are obtained. The presented results illustrate impulsive control is an important strategy in ecological resource management since it can transform the permanence of ecological system.
出处 《应用数学》 CSCD 北大核心 2010年第3期554-562,共9页 Mathematica Applicata
基金 Supported by Natural Science Foundation of China(10801056 ,10971057) Guangdong Province (84510631000730)
关键词 比率相关功能性反应 持续生存 周期解 扩散捕食者-食饵模型 Ratio-dependent Permanence Periodic solution Diffusive predator-prey system
作者简介 ZHONG Minling, female, Han, Guangdong,lecturer, major in differential equation.
  • 相关文献

参考文献11

  • 1Akhmet M U,Beklioglu M,Ergence T,Tkachenko V I.An impulsive ratio-dependent predator-prey system with diffusion[J].Nonlinear Anal.Real World Appl.,2006,7:1255-1267.
  • 2Berryman A A.The orgins and evolution of predator-prey theory[J].Ecology,1992,75:1530-1535.
  • 3Cushing J M.Periodic time-dependent predator-prey system[J].SIAM J.Appl.Math.,1977,32:82-95.
  • 4Henry D.Geometric Theory of Semilinear Parabolic Equations[M].Berlin:Springer,1981.
  • 5Lakshmikantham V,Bainov D D,Simenov P S.Theory of Impulsive Equations[M].Singapore:World Scientific,1989.
  • 6Liu X,Chen L.Global dynamics of the periodic logistic system with periodic impulsive perturbations[J].J.Math.Anal.Appl.,2004,289:273-291.
  • 7Liu X,Rolf K.Impulsive control of a Lotka-Volterra system[J].IMA J.Math.Control Inform.,1998,15:269-284.
  • 8Pang P Y H,Wang M.Qualitative analysis of a ratio-dependent predator-prey with diffusion[J].Proc.Roy.Soc.Edinburgh Sect.,2003,133(A):919-942.
  • 9Pao C V.Nonlinear Parabolic and Elliptic Equations[M].New York:McGraw-Hill,2005.
  • 10Samoilenko A M,Perestyuk N A.Impulsive Differential Equations[M].Singapore:World Scientific,1995.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部