期刊文献+

有限推力椭圆轨道近距离拦截方法 被引量:2

A Thurst-Limited Short-Distance Interception Scheme on Elliptical Orbit
在线阅读 下载PDF
导出
摘要 针对椭圆轨道近距离飞行器确定时间最小能量拦截问题,研究了有限推力一次机动作用下的点火时刻以及发动机推力方向的确定方法。经典两点边值问题是在初始时刻施加速度脉冲,在固定时间达到要求位置。根据能量最优要求,给出了脉冲推力条件下的最佳点火时刻的确定方法,通常不是初始时刻。并证明了发动机推力方向始终对准速度增益方向时,所需能量最小。仿真结果表明选取最佳点火时刻可减小发动机工作时间,且速度增益制导方法可提高命中精度。 For the fixed time,min-fuel interception problem on elliptical orbits,a method for solving the ignition time and thrust direction with a thrust-limited maneuver is proposed. Classical two-point boundary value problem requires that the thruster imposes an impulse on an interceptor at initial time,such that the interceptor can reach a desired position at the terminal time. For the min-fuel demand,a method for calculating the optimal ignition time with the impulse-thrust is analyzed; usually that is not the initial time. Moreover,it is proved that the fuel is minimized by aligning the thrust direction with the relative velocity-to-be-gained vector. Simulation results show that selecting the optimal ignition time can reduce the burning time of thruster,and the velocity gain guidance method can enhance the accuracy of interception.
机构地区 哈尔滨工业大学
出处 《宇航学报》 EI CAS CSCD 北大核心 2010年第7期1762-1767,共6页 Journal of Astronautics
基金 国家自然科学基金(60674102) 新世纪优秀人才资助计划(NECT-08-0153)
关键词 椭圆轨道 有限推力 相对运动 速度增益制导 Elliptical orbits Limited thrust Relative motion Velocity gain guidance
作者简介 周荻(1969-),男,博士,教授,主要研究方向为飞行器制导与控制,非线性控制与滤波。通信地址:哈尔滨工业大学航天学院327信箱(150001)电话:(0451)86413411—8507E-mail:zhouhit@gmail.com
  • 相关文献

参考文献9

  • 1林来兴.空间交会对接技术[M].北京:国防工业出版社,1994..
  • 2Clohessy W H,Wiltshire R S.Terminal guidance system for satellite rendezvous[J].Journal of Astronautical Sciences,1960,27(9):653-678.
  • 3Yamanaka K,Ankersen F.New state transition matrix for relative motion on an arbitrary elliptical orbit[J].Journal of Guidance,Control,and Dynamics,2002,25(1):60-66.
  • 4张刚,周荻.追踪椭圆轨道目标Hill制导及其误差分析[J].宇航学报,2009,30(4):1376-1384. 被引量:4
  • 5Miele A,Weeks M W,Ciarcia M.Guidance trajectories for spacecraft rendezvous[J].Journal of Optimization Theory and Application,2007,132(1):353-376.
  • 6Luo Y Z,Tang G J,Li H Y.Optimization of multiple-impulse minimum-time rendezvous with impulse constraints using a hybrid genetic algorithm[J].Aerospace Science and Technology,2006,10:534-540.
  • 7梁新刚,杨涤.应用非线性规划求解异面最优轨道转移问题[J].宇航学报,2006,27(3):363-368. 被引量:11
  • 8Sengupta P,Vadali S R.Analytical solution for power-limited optimal rendezvous near an elliptic orbit[J].Journal of Optimization Theory and Application,2008,138:115-137.
  • 9Battin R H.An introduction to the mathematics and methods of astrodynamics,revised edition[M].Virginia:AIAA Education Series,1999:515-566.

二级参考文献16

  • 1林来兴.空间交会对接技术[M].国防工业出版社,1994:40-60.
  • 2Hiroshi I,Bishop R H.Analysis of the targeting error induce-d by hill's guidance[C].AIAA -93 -3860-CP,1993:1431 -1441.
  • 3Melton R G.Time-explicit representation of relative motion b-etween elliptical orbits[J].Journal of Guidance,Control,and Dynamics,2000,23(4):604-611.
  • 4Pini G,Kasdin N J.Nonlinear modeling of spacecraft relativ-e motion in the configuration space[J].journal of Guidance,Control,and Dynamics,2004,27(1):154-157.
  • 5Ross 1 M.Linearized dynamic equations for spacecraft subject to J2 perturbations[J].Journal of Guidance,Control,and Dy-nam-ics,2003,26(4):657-659.
  • 6Mayer H,Carter T.Orbits and relative motion in the gravitat-ional field of an oblate body[J].Journal of Guidance,Control,and Dynamics,2008,31(3):522-532.
  • 7Koji Y,Finn A.New state transition matrix for relative moti-on on an arbitrary elliptical orbit[J].Journal of Guidance,Co-ntrol,and Dynamics,2002,25(1):60 -66.
  • 8Kechichian J A.Mechanics of trajectory optimization using nonsingular variation equations in polar coordinates[J].Journal of Guidance,Control,and Dynamics,1999,22(3):421-432
  • 9Chuang Jason C H,Goodson T D,Hanson J.Multiple-burn families of optimal low-and-medium-thrust orbit transfer[J].Journal of Spacecraft and Rocket,1999,36(6):866-874
  • 10Hanson J M,Duckman G A.Optimization of many-burn orbital transfer[J].The Journal of the Astronautical Sciences,1997,45(1):1-40

共引文献22

同被引文献25

  • 1陈统,徐世杰.基于遗传算法的最优Lambert双脉冲转移[J].北京航空航天大学学报,2007,33(3):273-277. 被引量:30
  • 2师鹏,李保军,赵育善.有限推力下的航天器绕飞轨道保持与控制[J].北京航空航天大学学报,2007,33(7):757-760. 被引量:11
  • 3Norman M C, Peck M A. Orbit maneuvers through inter-satellite forcing [ C ]. AIAA Guidance, Navigation, and Control Conference, Chicago, USA, August 10- 13, 2009.
  • 4Zhou B, Lin Z L, Duan G R. Lyapunov differential equation approach to elliptical orbital rendezvous with constrained controls [J]. Journal of Guidance, Control, and Dynamics, 2011, 34 (2) : 345 -358.
  • 5Zhang L X, Boukas E K. Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities [J]. Automatica, 2009, 45:463 -468.
  • 6Boukas E K. On reference model tracking for Markov jump systems [ J]. International Journal of Systems Science, 2009, 40 (4) : 393 -401.
  • 7Frago M D, Baczynski J. Lyapunov coupled equations for continuous-time infinite Markov jump linear systems [ J]. Journal of Mathematical Analysis and Applications, 2002, 274:319 - 335.
  • 8Shen H J,Tsiotras P. Optimal two-impulse rendezvous using mul- tiple-revolution Lambert solutions[ J]. Journal of Guidance,Con- trol, and Dynamics,2003,26( 1 ) :50-61.
  • 9Spencer D B, Kim Y H. Optimal spacecraft rendezvous using genetic algorithms [ J ]. Journal of Spacecraft and Rockets,2002, 39(6) :859-865.
  • 10Kim D Y,Woo B,Park S Y,et al. Hybrid optimization for multi- pie-impulse reconfiguration trajectories of satellite formation fly- ing[J]. Advances in Space Research,2009,44( I ) :1257-1269.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部