期刊文献+

氢气在乙酰丙酸+水+γ-戊内酯中的溶解度 被引量:2

Solubility of hydrogen in liquid mixtures of levulinic acid + water + γ-valerolactone
原文传递
导出
摘要 在温度353.2~453.2K、压力0.75~5.25MPa的条件下,采用平衡取样的方法,测定了氢气在不同组成(xi为摩尔分数)的四种液体乙酰丙酸、乙酰丙酸(x1=0.37)+水(x2=0.63)、γ-戊内酯、乙酰丙酸(x1=0.33)+水(x2=0.33)+γ-戊内酯(x3=0.34)中的溶解度.根据亨利定律对实验数据进行关联,得出不同温度下氢气在液体中的亨利系数,通过亨利系数和温度的关系,计算出氢气在液体中的摩尔溶解焓和摩尔溶解熵.结果表明:在实验温度、压力范围内,提高温度、增加压力,氢气在四种不同液体中的溶解度皆增大;在温度和压力相同时,氢气在四种液体乙酰丙酸(x1=0.37)+水(x2=0.63)、乙酰丙酸、乙酰丙酸(x1=0.33)+水(x2=0.33)+γ-戊内酯(x3=0.34)和γ-戊内酯中的溶解度依次增大;氢气在四种液体中的亨利系数均随着温度的升高而减小;氢气在四种液体中的摩尔溶解焓为正值,摩尔溶解熵为负值. The solubility of hydrogen in the liquid phase of hydrogenation of levulinic acid to γ-valerolactone is an important parameter that influences the rate of the hydrogenation reaction in three-phase catalytic hydrogenation.The solubility of hydrogen in the liquid mixtures of levulinic acid + water + γ-valerolactone has been measured at pressures from 0.75 to 5.25 MPa and temperatures from 353.2 to 453.2 K based on analytical method using a high-pressure variable volume view cell.The result shows that the solubility of hydrogen increases with the elevation of pressure and temperature.The solubility of hydrogen in different liquids increases in the following order:levulinic acid (x1=0.37) + water (x2=0.63) levulinic acid levulinic acid (x1=0.33) + water (x2=0.33) + γ-valerolactone (x3= 0.34) γ-valerolactone.The solubility of hydrogen in the liquid of this three-phase catalytic hydrogenation reaction increases with the process of the chemical reaction.An extension of Henry's law was employed to correlate the hydrogen solubility data.The Henry's law constants were obtained,and they decrease with the increase of temperature.The molar enthalpy of hydrogen solution is positive from 4.78 to 8.41 kJ mol-1 and the molar entropy of hydrogen solution is negative from-42.70 to-24.89 J mol-1 K-1.
出处 《中国科学:化学》 CSCD 北大核心 2010年第9期1387-1394,共8页 SCIENTIA SINICA Chimica
基金 北京市自然科学基金(2082017) 教育部新世纪优秀人才支持计划(NCET-08-0710)资助
关键词 氢气 溶解度 乙酰丙酸 γ-戊内酯 hydrogen solubility levulinic acid γ-valerolactone water enthalpy of solution
作者简介 通讯作者,E—mail:wzwu@mail.buct.edu.cn
  • 相关文献

参考文献24

  • 1Fitzpatrick SW. Production of levulinic acid from carbohydrate-containing materials. US Paten, 5 608 105, 1997-03-04.
  • 2蔡磊,吕秀阳,何龙,刘昕,任其龙.新平台化合物乙酰丙酸化学与应用[J].化工时刊,2004,18(7):1-4. 被引量:14
  • 3Farnleitner L, Sttickler H, Kaiser H, Kloimstein E. Process for the preparation of storage-stable Levulinic acid. US Patent, 5 189 215, 1993-02-23.
  • 4Mehdi H, Fttbos V, Tuba R, Bodor A, Mika LT, Horwith IT. Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass: From sucrose to levulinic acid, γ-valerolactone, 1,4-pentanediol, 2-methyl-tetrahydrofuran, and alkanes. Top Catal, 2008, 48:49-54.
  • 5Horvath IT, Mehdi H, Fabos V, Boda L, Mika LT. 7-Valerolactone-a sustainable liquid for energy and carbon-based chemicals. Green Chem, 2008, 20:238-242.
  • 6Lange JP, Vestering JZ, Haan RJ. Towards "bio-based" nylon: Conversion of γ-valerolactone to methyl pentenoate under catalytic distillation conditions. Chem Commun, 2007, 33:3488-3490.
  • 7Schuette HA, Sah PPT. Normal valerolactone. J Am Chem Soc, 1926, 48:3163-3165.
  • 8Schuette HA, Thomas RW. Normal valerolactone.III Its preparation by the catalytic reduction of levulinic acid with hydrogen in the presence of platinue oxide. J Am Chem Soc, 1930, 52:3010--3012.
  • 9Chaikin S W, Brown WG. Reduction of aldehydes, ketones and acid chlorides by sodium borohydride. J Am Chem Soc, 1949, 71:122-125.
  • 10Bourne RA, Stevens JG, Ke J, Poliakoff M. Maximising opportunities in supercritical chemistry: The continuous conversion of levulinic acid to γ-valerolactone in CO2. Chem Commun, 2007, 44:4632-4634.

二级参考文献45

  • 1汪培初.乙酰丙酸用作不定形耐火材料的结合剂[J].国外耐火材料,1993,18(10):11-15. 被引量:1
  • 2白亮,赵玉龙,张碧江.高压搅拌釜中H_2、CO在不同液体介质中的溶解度和体积传质系数的研究[J].化学反应工程与工艺,1996,12(2):189-195. 被引量:23
  • 3Lawsonw E,Salzberg PL.Levulinic acid ester.US 2008720,1935-07-23
  • 4Leonard R H. Method of converting levulinic acid to Alpha angelica lactone. US 2 809 203, 1957-10-08
  • 5Schuette H A,Sah Peter P T. J. Am. Chem. Soc., 1926, 48 (12):3 163
  • 6Schuette H A,Thomas R W. J. Am. Chem. Soc., 1930, 52 (7) :3 010
  • 7Kyrides L P,Craver J K. Process for the production of lactones. US 2368366, 1945-01-30
  • 8Chaikin S W,Brown W G. J. Am. Chem. Soc., 1949, 71 (1) :122
  • 9Dunlop A P,Madden J W. US 2786852, 1957-03-26
  • 10Broadbent H S, Campbell G C, and Bartley W J., et al. J. Org. Chem., 1959, 24 (12) :1 847

共引文献18

同被引文献36

  • 1蔡绍洪.平衡与非平衡两类相变的临界联系[J].电子科技大学学报,1997,26(S1):171-179. 被引量:4
  • 2柯杰,韩布兴,阎海科,柯以侃.气体在克拉玛依九区稠油中的溶解度关联与计算[J].石油学报,1994,15(3):91-95. 被引量:9
  • 3刘小贤,崔云康.李杨理论在非平衡相变中的研究[J].南京工程学院学报(自然科学版),2005,3(2):6-10. 被引量:1
  • 4Saeidi A, Handy L L. Flow and phase behavior of gas condensate and volatile oils in porous media[R], SPE 4891-MS, 1974.
  • 5Jacoby R H, Berry V J. A method for predicting depletion performance of a reservoir producing volatile crude oil[J]. Petroleum Transactions, AIME, 1957, 210: 27-33.
  • 6Woods R W. Case history of reservoir performance of a highly volatile type oil reservoir[J]. Petroleum Transactions, AIME, 1955, 204: 156-159.
  • 7Mackay D, Shiu W Y, Sutherland R P . Determination of air-water Henry's Law constants for hydrophobic pollutants[J]. Environmental Science & Technology, 1979, 13(3): 333-337.
  • 8Sotelo J L, Beltran F J, Benitez F J, et al. Henry’s Law constant for the ozone-water system[J]. Water Research, 1989, 23(10): 1239-1246.
  • 9Standing M B. A pressure-volume-temperature correlation for mixtures of California oil and gases[C]//API Drilling and Production Practice Conference. Washington: American Petroleum Institute, 1947.
  • 10Lasater J A. Bubble point pressure correlation[J]. Journal of Petroleum Technology, 1958, 10(5): 65-67.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部