期刊文献+

基于无约束迭代学习的间歇生产过程优化控制 被引量:4

Nonrestraint-iterative learning-based optimal control for batch processes
在线阅读 下载PDF
导出
摘要 针对基于迭代学习控制的间歇过程优化控制算法难以进行收敛性分析的难题,本文基于数据驱动的神经模糊模型提出一种新颖的间歇过程无约束迭代学习控制方法,通过调节因子的变化去除了约束条件,使控制轨迹在批次轴上收敛,并创新性地对优化问题的收敛性给出了严格的数学证明。在理论研究的基础上,将本文提出的算法用于间歇连续反应釜的终点质量控制研究,仿真结果验证了本文算法的有效性和实用价值,为间歇过程的优化控制提供了一条新途径。 Considering that it is difficult to analyze the convergence of iterative learning optimal control for quality control of batch processes,a novel iterative learning control based on data-driven neural fuzzy model for product quality control in batch process is proposed in this paper,which results in the convergence of the product quality and control trajectory in batch axes.Moreover,the rigorous proof is given.Lastly,to verify the efficiency of the proposed algorithm,it was applied to a benchmark batch process.The simulation results show that the proposed method is better and can be applied to practical processes,thus it provides a new way for the control of batch processes.
出处 《化工学报》 EI CAS CSCD 北大核心 2010年第8期1889-1893,共5页 CIESC Journal
基金 上海市国际科技合作基金项目(08160705900) 上海市科委地方高校专项基金项目(08160512100) 上海市基础研究重点项目( 09JC1406300 ) 教育部博士点基金项目(20093108120013) 上海市教育委员会科研创新项目(09YZ08) 上海大学'十一五'211建设项目 2009年上海大学研究生创新基金项目(SHUCX092212)~~
关键词 间歇过程 产品质量控制 迭代学习 batch process product quality control iterative learning
作者简介 联系人:贾立(1975-),女,博士,副教授。
  • 相关文献

参考文献15

二级参考文献86

共引文献86

同被引文献46

  • 1樊雷,王海清,宋执环,李平.基于广义预测控制的间歇生产迭代优化控制[J].化工自动化及仪表,2006,33(2):25-28. 被引量:9
  • 2席裕庚,王凡.非线性系统预测控制的多模型方法[J].自动化学报,1996,22(4):456-461. 被引量:61
  • 3刘毅,王海清,李平.局部最小二乘支持向量机回归在线建模方法及其在间歇过程的应用[J].化工学报,2007,58(11):2846-2851. 被引量:18
  • 4Togai M, Yamano O. Analysis and design of an optimal learning control scheme for industrial robots : A discrete system approach [ C ]//24th IEEE Conference on Decision and Control. Piscataway, N J, USA: IEEE, 1985:1399 -1404.
  • 5. Tao K M, Kosut R L, Aral G. Learning feedforward control[ C ]//American Control Conference. Piscataway, N J, USA : IEEE, 1994 : 2575 - 2579.
  • 6Gorinevsky D M. Direct learning of feedforward control for manipulator path tracking[ C ]//Proceedings of IEEE International Symposium on In- telligent Control. Piscataway, N J, USA: IEEE, 1992:42-47.
  • 7Pang B, Shao C, Modified Newton-based ILC solving specific target tracking problems for non-linear batch reactor[ J]. International Journal of Modelling, Identification and Control, 2013, 18(2) : 158 -165.
  • 8Son T D, Ann H S. Terminal iterative learning control with multiple intermediate pass points[ C ]//American Control Conference. Piscataway, NJ, USA: IEEE, 2011:3651 -3656.
  • 9Barton K L, Alleyne A G. A norm optimal approach to time-varying ILC with application to a multi-axis robotic testbed [ J ]. IEEE Transactions on Control Systems Technology, 2011, 19( 1 ) : 166 -180.
  • 10Van de Wijdeven J, Donkers T, Bosgra O. Iterative learning control for uncertain systems: Robust monotonic convergence analysis[ J ]. Auto- matica, 2009, 45 ( 10 ) : 2383 - 2391.

引证文献4

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部