期刊文献+

基于改进遗传算法的煤矿探测机器人路径规划 被引量:5

Path Planning of Coal Mine Detecting Robot Based on Improved Genetic Algorithm
在线阅读 下载PDF
导出
摘要 针对煤矿井下环境的复杂性和不确定性,提出了一种改进遗传算法用于煤矿探测机器人的路径规划。采用栅格法在三维空间中对机器人工作环境进行建模,对染色体编码,初始种群生成、适应度函数的设计等操作进行了改进;算法采用了可变长度的染色体编码方式,使用随机指导式搜索策略来生成初始种群;根据路径长度最短且能耗最少的评价指标设计了适应度函数,并优化设计了遗传算法中的交叉和变异算子,解决了传统遗传算法"早熟现象"和"收敛速度慢"的问题,仿真实验证明了该方法的有效性和可行性。 According to complexity and uncertainty of underground environment,this paper presented an improved genetic algorithm for path planning of coal mine detecting robot.Three-dimensional workspace was modeled by grid method. A series of improvement was made in chromosome coding,population initialization and fitness function design.Variable length coding was adopted,the initial population was generated by the random guided searching strategy.Fitness function was designed with shortest path length and minimum energy consumption as the criterion.Crossover operator and mutation operator were optimized to solve the problems of the simple genetic algorithm such as premature phenomena and slow convergence.The simulation results show that the improved algorithm is effective and feasible.
作者 周巍 李元宗
出处 《太原理工大学学报》 CAS 北大核心 2010年第4期364-367,共4页 Journal of Taiyuan University of Technology
基金 山西省科技攻关资助项目(20080321009)
关键词 煤矿井下 探测机器人 路径规划 遗传算法 coal mine detecting robot path planning genetic algorithm
作者简介 周巍(1969-),女,山西太原人,博士生,讲师,主要从事机电一体化技术及应用研究,(Tel)13593172060
  • 相关文献

参考文献10

  • 1孙树栋,曲彦宾.遗传算法在机器人路径规划中的应用研究[J].西北工业大学学报,1998,16(1):79-83. 被引量:79
  • 2GERKE M. Genetic path planning for mobile robots[C]//IEEE. Proceedings of the 1999 American Control Conference. San Diego: IEEE Press, 1999 : 2424-2429.
  • 3H u Y, Yang S X. A knowledge based genetic algorithm for path planning of a mobile robot[C]//IEEE. Proceedings of the 2004 IEEE international Conference on Robotics and Automation. New Orleans: IEEE Press, 2004:4350-4355.
  • 4王强,姚进,王进戈.基于遗传算法的移动机器人的一种路径规划方法[J].哈尔滨工业大学学报,2004,36(7):867-870. 被引量:19
  • 5TU J, YANG S. Genetic algorithm based path planning for a mobile robot[C]//IEEE. Proceedings of the 2003 IEEE International Conference on Robotics and Automation. Taipei: IEEE Press, 2003 : 1221-1226.
  • 6OSCAR Castillo, LEONARDO Trujillo. Multiple objective genetic algorithms for path planning optimization in autonomous mobile robots[J]. Soft Computing, 2007,11 ( 1 ) : 269-279.
  • 7HOWDEN W. E. The sofa problem[J].The Computer Journal, 1968,11(3):299-301.
  • 8师黎,邵国.改进遗传算法用于移动机器人路径规划[J].计算机工程与设计,2008,29(24):6330-6333. 被引量:12
  • 9DE JONG K A. An analysis of the behavior of a class of genetic adaptive systems[D]. Michigan: University of Michigan, 1975.
  • 10RUDOLPH G. Convergence analysis of canonical genetic algorithms[J]. IEEE Trans on Neural Networks, 1994, 5(1) :96-101.

二级参考文献15

  • 1陈晓龙,黄道平.遗传算法选择操作及MATLAB实现[J].微型电脑应用,2004,20(5):53-55. 被引量:3
  • 2恽为民,席裕庚.基于遗传算法的机器人关节空间最优运动规划[J].机器人,1995,17(4):206-217. 被引量:15
  • 3Hu Yanrong,Yang SX.A knowledge based genetic algorithm for path planning of a mobile robot[C]. New Orleans:Proceedings of the 2004 IEEE international Conference, on Robotics and Automation,2004:4350-4355.
  • 4Li Qing,Zhang Wei.An improved genetic algorithm of optimum path planning for mobile robots [C]. Proceedings of the 2006 IEEE International Conference on Intelligent Systems Design and Applications,2006:637-642.
  • 5Oscar Castillo,Leonardo Trujillo.Multiple objective genetic algorithms for path-planning optimization in autonomous mobile robots[J].Sott Computing,2007,11 (1):269-279.
  • 6Leung C H,Zalzala AMS.A genetic solution for the motion of wheeled robotic systems in dynamic environments[C].International Conference on Control, 1994:760-764.
  • 7王凌.智能优化算法机器应用[M].北京:清华大学出版社,2001.
  • 8[1]VELOSO M, STONE P. Individual and collaborative behaviors in a team of homogeneous robotic soccer agents [ A ]. Proceedings of the Third International Conference on Multi- Agent Systems [C]. [s. l.]: [s. n.],1998. 309-316.
  • 9[2]HASHEM M, KEIGO W, KIYOTAKA I. An Evolutionary Optimal Obstacle Avoidance Method For Mobile Robotics [M]. Oita:[s. n. ], 1999.618-621.
  • 10[3]HWANG Y, AHUJA N. Gross motion planning - a survey[ J ]. ACM Computing Surveys, 1992,24 ( 3 ): 219 -289.

共引文献104

同被引文献88

  • 1黄柯棣,刘宝宏,黄健,曹星平,尹全军,郭刚,张琦,张传富,刘云生.作战仿真技术综述[J].系统仿真学报,2004,16(9):1887-1895. 被引量:107
  • 2戴朝华,朱云芳,陈维荣.云遗传算法[J].西南交通大学学报,2006,41(6):729-732. 被引量:18
  • 3张光卫,康建初,李鹤松,李德毅.基于云模型的全局最优化算法[J].北京航空航天大学学报,2007,33(4):486-490. 被引量:37
  • 4戴朝华,朱云芳,陈维荣,林建辉.云遗传算法及其应用[J].电子学报,2007,35(7):1419-1424. 被引量:84
  • 5Glasius R, Komoda A, Gielen S. A biologically inspired neural net for trajectory formation and obstacle avoidance[J]. Biological Cybernetics, 1996, 74(6): 511-520.
  • 6XUE Ying-hua, TIAN Guo-hui, HUANG Bin. Optimal robot path planning based on danger degree map[C]//Proceedings of 2009 IEEE International Conference on Automation and Logistics. Shenyang: IEEE, 2009: 1040-1045.
  • 7Huang G, Tung C, Ciou J. To achieve the path planning of mobile robot for a correct destination and direction using fuzzy theory[C]//Proceedings of 2009 IEEE International Symposium on Industrial Electronics. Seoul: IEEE, 2009: 1737-1742.
  • 8ZHANG Xiao-yong, WU Min, PENG Jun, et al. A rescue robot path planning based on ant colony optimization algorithm[C]//Proceedings of the 2009 IEEE International Conference on Information Technology and Computer Science. Kiev: IEEE, 2009: 180-183.
  • 9Ghorbani A, Shiry S, Nodehi A. Using genetic algorithm for a mobile robot path planning[C]//Proceedings of the 2009 International Conference on Future Computer and Communication. Kuala Lumpur: IEEE, 2009: 164-166.
  • 10Mansouri M, Shoorehdeli M A, Teshnehlab M. Integer GA for mobile robot path planning with using another GA as repairing function[C]//Proceedings of the IEEE International Conference on Automation and Logistics. Qingdao: IEEE, 2008: 135-140.

引证文献5

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部