期刊文献+

人工鱼群算法在气固流化床流型识别中的应用 被引量:2

Application of artificial fish-swarm algorithm in gas-solid fluidized bed flow regime identification
在线阅读 下载PDF
导出
摘要 准确识别流型是流化床气固二相流参数检测的一项重要内容,实验是在流化床气固二相流实验系统上进行的。首先,采集5种典型流型的压力波动信号,并以信号的统计参量作为流型特征。然后,将样本送入经过人工鱼群优化的BP神经网络进行训练。人工鱼群(AFSA)是一种新型的智能优化算法,具有全局收敛性好,鲁棒性强,对初值不敏感等特点,通过优化神经网络的权值使识别率得到明显提高,实现了气固流化床典型流型的快速、准确识别。实验结果表明,该方法对气固流化床5种典型流型的识别率达到97%,为在线识别气固流化床流型提供了一种新的有效方法。 The exact identification of flow regime is an important content to detect the parameters of gas-solid two-phase flow fluidized bed.The experiments were conducted on gas-solid fluidized bed system in the following steps: collect pressure fluctuation signals of 5 kinds of typical flow regimes,take statistical parameters of those signals as characteristics of flow regimes,and send those training samples to BP neural network optimized by artificial fish-swarm algorithm(AFSA),which is a new kind of intelligence optimization algorithm,and has advantages of good global astringency,robustness and insensitive to initial value.The optimized weights of neural network can improve identification rate obviously.Thus,it can identify 5 typical flow regimes of gas-solid fluidized bed successfully,rapidly and accurately.The test results show that identification rate of this method can reach 97% and it provides a new effective way to identify the gas-solid flow regime of fluidized bed online.
出处 《化学工程》 CAS CSCD 北大核心 2010年第7期39-42,50,共5页 Chemical Engineering(China)
关键词 BP神经网络 人工鱼群算法 气固流化床 统计参数 BP neural network artificial fish-swarm algorithm gas-solid fluidized bed statistical parameters
作者简介 周云龙(1960-),男,教授,博士,从事多相流流动特性和多相流检测技术方面的研究,E-mail:zyl@mail.nedu.edu.cn。
  • 相关文献

参考文献7

二级参考文献34

共引文献927

同被引文献24

  • 1周云龙,孙斌.基于神经网络和D-S证据理论的气液两相流流型识别方法[J].化工学报,2006,57(3):607-613. 被引量:19
  • 2ZHOU Y L,WANG F.Envelope spectrum analysis of pressure fluctuation based on wavelet decomposition[J].Applied Mechanics and Materials,2014,448:3392-3396.
  • 3ECKMANN J P,KAMPHORST S O,RUELLE D.Recurrence plots of dynamical systems[J].EPL(Europhysics Letters),1987,4(9):973.
  • 4ECKMANN J P,RUELLE D.Ergodic theory of chaos and strange attractors[J].Reviews of modern physics,1985,57(3):617.
  • 5PACKARD N H,CRUTCHFIELD J P,FARMER J D,et al.Geometry from a time series[J].Physical Review Letters,1980,45(9):712.
  • 6TAKENS F.Detecting strange attractors in turbulence[M]//Dynamical systems and turbulence,Warwick1980.Annapolis Junction,USA:Springer Berlin Heidelberg,1981:366-381.
  • 7KENNEL M B,BROWN R,ABARBANEL H D I.Determining embedding dimension for phase-space recons-truction using a geometrical construction[J].Physical Review A,1992,45(6):3403.
  • 8WEBBER C L,ZBILUT J P.Dynamical assessment of physiological systems and states using recurrence plot strategies[J].Journal of Applied Physiology,1994,76(2):965-973.
  • 9ZBILUT J P,WEBBER JR C L.Embeddings and delays as derived from quantification of recurrence plots[J].Physics Letters A,1992,171(3):199-203.
  • 10TRULLA L L,GIULIANI A,ZBILUT J P,et al.Recurrence quantification analysis of the logistic equation with transients[J].Physics Letters A,1996,223(4):255-260.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部