期刊文献+

小推力深空探测轨道全局优化设计 被引量:11

Global Trajectory Optimization in Space Exploration by Low-thrust
原文传递
导出
摘要 针对小推力深空探测四维轨道优化设计,给出了一种组合优化算法,采用该算法基于二体模型进行了深空探测四维轨道全局优化。该组合优化算法由动态规划算法、静态参数优化算法与共轭梯度算法组成。动态规划算法和静态参数优化算法用以选择最优的发射窗口、返回窗口及相应的近似飞行轨道;基于该近似轨道方案,采用共轭梯度算法(解决两点边值问题)求解精确的最优轨道。通过大量的数值仿真计算,得到了航天器的全局最优飞行轨道,及相应的最优发射窗口与返回窗口。数值仿真结果表明,该组合优化算法对深空探测轨道优化具有良好的通用性和工程运用价值。 The 4D flight trajectory of a space probe is globally optimized by a combinatorial algorithm of trajectory optimization based on a two-body model of low-thrust space exploration.The combinatorial optimization method consists of dynamic programming,static parameter optimization and conjugate gradient algorithms based on optimal control theory.Dynamic programming and static parameter optimization algorithms are employed to globally optimize the launch and return time windows,and obtain approximate solutions of optimal trajectories,while the conjugate gradient algorithm (solving two-point boundary value problems) is used to optimize the exact 4D flight trajectory based on the approximate solutions obtained.The launch and return time windows as well as the 4D flight trajectories between the Earth and the asteroid are globally optimized based on a great deal of numerical optimization simulations.The numerical simulation results show that the combinatorial optimization algorithm is a general method for 4D global flight trajectory optimization.This algorithm may be widely used in engineering problems on global optimization of dynamic and static parameters.
出处 《航空学报》 EI CAS CSCD 北大核心 2010年第7期1366-1372,共7页 Acta Aeronautica et Astronautica Sinica
关键词 飞行轨迹 全局优化 组合优化算法 小推力 时间窗口 仿真 flight trajectories global optimization combinatorial optimization algorithm low-thrust time window simulation
作者简介 黄国强(1981-)男,博士研究生。主要研究方向:航天器控制与仿真。Tel:13382063365 E—mail:huangguoqiang@nuaa.edu.cn 通讯作者:南英 Email:nanyingi@nuaa.edu.cn,南英(1964-)男,博士,教授,博士生导师。主要研究方向:飞行力学、飞行控制与仿真。Tel:025-84890399 陆宇平(1957-)男,教授,博士生导师。主要研究方向:航天器制导与控制。E—mail:yplac@nuaa.edu.cn
  • 相关文献

参考文献18

  • 1Global trajectory optimization competition (GTOC)[online database] (2008-11-04)[2009-11-17].http:∥www.esa.int/gsp/ACT/mad/op/GTOC/index.htm.
  • 2Wall J B,Conway A B.Shape-based approach to low-thrust rendezvous trajectory design[J].Journal of Guidance,Control,and Dynamics,2009,32(1):96-101.
  • 3Enright P,Conway B.Optimal finite-thrust spacecraft trajectories using collocation and nonlinear programming[J].Journal of Guidance,Control,and Dynamics,1991,14(5):981-985.
  • 4Herman A L,Conway B A.Direct optimization using collocation based on high order Gauss-Lobatto quadrature rules[J].Journal of Guidance,Control,and Dynamics,1996,19(3):592-599.
  • 5Tsien H.Take-off from satellite orbit[J].Journal of the American Rocket Society,1953,23(4):233-236.
  • 6Boltz F W.Orbital motion under continuous radial thrust[J].Journal of Guidance,Control,and Dynamics,1991,14(3):667-670.
  • 7Boltz F W.Orbital motion under continuous tangential thrust[J].Journal of Guidance,Control,and Dynamics,1992,15(6):1503-1507.
  • 8Benney D.Escape from a circular orbit using tangential thrust[J].Journal of the American Rocket Society,1958,28(3):167-169.
  • 9Prussing J,Coverstone-Carroll V.Constant radial thrust acceleration redux[J].Journal of Guidance,Control,and Dynamics,1998,21(3):516-518.
  • 10Tsu T.Interplanetary travel by solar sail[J].Journal of the American Rocket Society,1959,29(3):422-427.

二级参考文献1

共引文献21

同被引文献111

引证文献11

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部