期刊文献+

基于稀疏表示的被动毫米波L-R成像算法 被引量:7

L-R Imaging Algorithm for Passive Millimeter Wave Based on Sparse Representation
在线阅读 下载PDF
导出
摘要 在被动毫米波的图像恢复中,L-R算法是一种简单而有效的非线性方法。但当噪声不可忽略时,L-R算法难以获得较好的复原结果。自适应稀疏表示,作为一种新的信号处理方法,具有表达信号灵活的特点,能够在保持目标特征的同时有效地去除噪声。该文提出一种基于自适应稀疏表示的L-R算法。首先采用稀疏信号表示的方法进行去噪,然后使用L-R算法进行图像恢复。这种改进算法通过使用基于自适应稀疏表示的去噪算法有效地减少了噪声对L-R算法的影响。实验数据的成像结果表明:该文的改进算法提高了L-R算法的性能,可用于低信噪比的图像复原。 In passive millimeter wave image restoration,L-R algorithm is a simple and effective nonlinear method.However,when the noise can not be neglected,it is difficult for L-R algorithm to get good restoration.As a novel signal processing method,adaptive sparse representation has a merit of representing signal flexibly and can de-noise effectively when maintaining features of targets.A novel L-R algorithm is proposed based on adaptive sparse representation.It first de-noises by employing sparse signal representation,and then restores images by using L-R algorithm.The modified algorithm reduces the influence of noise on L-R algorithm effectively by using de-noise algorithm based on adaptive sparse representation.The imaging results of experiment data show that the modified algorithm proposed in the paper improves the performance of L-R algorithm,and it can be used in image restoration when the signal to noise ratio is low.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第7期1707-1711,共5页 Journal of Electronics & Information Technology
基金 国防基础科研基金(A2420061104-06) 中国博士后基金(20090450834) 黑龙江省博士后基金(LBH-Z08241)资助课题
关键词 被动毫米波成像 L-R(Lucy-Richardson)成像算法 自适应稀疏表示 非线性 Passive millimeter wave imaging L-R(Lucy-Richardson) imaging algorithm Adaptive sparse representation Nonlinear
作者简介 成萍:女,1976年生,讲师,在站博士后,研究方向为雷达成像与识别、被动毫米波成像、稀疏信号表示等.通信作者:成萍chengping1219@126.com 赵家群:男,1976年生,讲师,研究方向为固体激光器及非线性频率转换. 司锡才:男,1940年生,教授,博士生导师,享受政府特殊津贴专家,研究方向为宽频带系统的信号检测、处理与识别等.
  • 相关文献

参考文献9

  • 1Pirogov Y A, Gladun V V, and Tischenko D A, et al.. Passive millimeter-wave imaging with superresolution[C]. Image and Signal Processing for Remote Sensing X, Proc. of SPIE, Bellingham, WA, 2004, 5573: 72-83.
  • 2Lettington A H, Yallop M R, and Dunn D. Review of super-resolution techniques for passive millimeter-wave imaging[C]. Infrared and Passive Millimeter-wave Systems: Design, Analysis, Modeling, and Testing, Proc. of SPIE, Bellingham, USA, 2002, 4719: 230-239.
  • 3Dupe F X, Fadili J M, and Starck J L. A proximal iteration for deconvolving Poisson noisy images using sparse representations[J]. IEEE Transactions on Image Processing, 2009, 18(2): 310-321.
  • 4Wright J, Yang A Y, and Ganesh A, et al.. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 5Aharon M, Elad M, and Bruckstein A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
  • 6Elad M and Aharon M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745.
  • 7Mairal J, Elad M, and Sapiro G. Sparse representation for color image restoration[J]. IEEE Transactions on Image Processing, 2008, 17(1): 53-69.
  • 8刘扬阳,金伟其,苏秉华.基于正交离散小波的超分辨力图像复原算法[J].北京理工大学学报,2005,25(5):431-434. 被引量:5
  • 9金炜,魏彪.中子数字图像几何不锐度校正算法研究[J].光学学报,2007,27(10):1765-1770. 被引量:4

二级参考文献20

  • 1邵军明,路宏年,蔡慧.X射线成像的一种点扩展函数模型[J].光学学报,2005,25(8):1148-1152. 被引量:9
  • 2宗思光,王江安.多尺度形态算子融合图像滤波技术及滤波质量评价[J].光学学报,2005,25(9):1176-1180. 被引量:15
  • 3胡小平,陈国良,毛征宇,余以道.离焦模糊图像的维纳滤波复原研究[J].仪器仪表学报,2007,28(3):479-482. 被引量:32
  • 4Elfendahl M P. Investigation of the convergence properties of an iterative image restoration algorithm[D]. Tucson: The University of Arizona, 1994.
  • 5Shekarforoush H, Chellappa R. Data-driven multichannel super-resolution with application to video sequences[J]. Journal of he Optical Society of America A,1999,16(3):481-492.
  • 6Nguyen N. Numerical techniques for image super-resolution[D]. Stanford:Stanford University,2000.
  • 7Maarten Jansen, Geert Uytterhoeven, Adhemar Bultheel. Image denoising by integer wavelet transforms and generalized cross validation[R]. Nijmegen: Katholieke University, 1997.
  • 8Hall P,Koch I. On the feasibility of cross-validation in image analysis[J]. Appl Math, 1992, 52(1): 292-313.
  • 9Donoho D L. Denoising by soft thresholding[J]. IEEE Trans on Information Theory,1995,41(3): 613-627.
  • 10Donoho D L,Johnstone I M. Threshold selection for wavelet shrinkage of noisy data[A]. Proc 16th Annual International Conference of Engineering in Medicine and Biology Society[C]. Baltimore,Maryland: IEEE,1994.24-25.

共引文献7

同被引文献57

  • 1陈建飞,李跃华,王剑桥.毫米波被动合成孔径成像系统[J].微波学报,2012,28(S1):253-256. 被引量:6
  • 2沈焕锋,李平湘,张良培.一种自适应正则MAP超分辨率重建方法[J].武汉大学学报(信息科学版),2006,31(11):949-952. 被引量:21
  • 3李杰,刘章军.基于标准正交基的随机过程展开法[J].同济大学学报(自然科学版),2006,34(10):1279-1283. 被引量:37
  • 4董怡,金伟其,张淼.数学形态学滤波在红外图像去噪中的应用研究[J].激光与红外,2007,37(8):795-798. 被引量:15
  • 5Nunes J C, Guyot S. Texture analysis based on local analy- sis of the bidimensional empirical mode decomposition[ J ]. Machine Vision and Application, 2005, 16 ( 2 ) : 177 - 155.
  • 6Mallat S and Zhang Z. Matching pursuit with time-frequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
  • 7Bergeau F and Mallat S. Matching pursuit of images. In: Proceedings of IEEE-SP, USA, 1994: 330-333.
  • 8Wright J and Yang A Y. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 9Mairal J and Bach F. Non-local sparse models for image restoration. IEEE International Conference of Computer Vision. Kyoto, Japan, 2009: 2272-2279.
  • 10Coifman R and Wickerhauser M. Entropy-based algorithms for best basis selection. IEEE Transactions on Information Theory, 1992, 38(2): 1713-1716.

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部