摘要
在被动毫米波的图像恢复中,L-R算法是一种简单而有效的非线性方法。但当噪声不可忽略时,L-R算法难以获得较好的复原结果。自适应稀疏表示,作为一种新的信号处理方法,具有表达信号灵活的特点,能够在保持目标特征的同时有效地去除噪声。该文提出一种基于自适应稀疏表示的L-R算法。首先采用稀疏信号表示的方法进行去噪,然后使用L-R算法进行图像恢复。这种改进算法通过使用基于自适应稀疏表示的去噪算法有效地减少了噪声对L-R算法的影响。实验数据的成像结果表明:该文的改进算法提高了L-R算法的性能,可用于低信噪比的图像复原。
In passive millimeter wave image restoration,L-R algorithm is a simple and effective nonlinear method.However,when the noise can not be neglected,it is difficult for L-R algorithm to get good restoration.As a novel signal processing method,adaptive sparse representation has a merit of representing signal flexibly and can de-noise effectively when maintaining features of targets.A novel L-R algorithm is proposed based on adaptive sparse representation.It first de-noises by employing sparse signal representation,and then restores images by using L-R algorithm.The modified algorithm reduces the influence of noise on L-R algorithm effectively by using de-noise algorithm based on adaptive sparse representation.The imaging results of experiment data show that the modified algorithm proposed in the paper improves the performance of L-R algorithm,and it can be used in image restoration when the signal to noise ratio is low.
出处
《电子与信息学报》
EI
CSCD
北大核心
2010年第7期1707-1711,共5页
Journal of Electronics & Information Technology
基金
国防基础科研基金(A2420061104-06)
中国博士后基金(20090450834)
黑龙江省博士后基金(LBH-Z08241)资助课题
作者简介
成萍:女,1976年生,讲师,在站博士后,研究方向为雷达成像与识别、被动毫米波成像、稀疏信号表示等.通信作者:成萍chengping1219@126.com
赵家群:男,1976年生,讲师,研究方向为固体激光器及非线性频率转换.
司锡才:男,1940年生,教授,博士生导师,享受政府特殊津贴专家,研究方向为宽频带系统的信号检测、处理与识别等.