期刊文献+

高阶四面体矢量元的实现与性能比较 被引量:2

Implementation and Performance Comparison for Higher Order Tetrahedral Vector Elements
在线阅读 下载PDF
导出
摘要 以H1(curl)四面体插值矢量元为例,基于基函数分类和单元矩阵分块技术,完整地给出了高阶矢量元单元矩阵的计算公式,显式给出了积分系数矩阵的计算结果。通过分析一个矩形谐振腔,系统比较了各种矢量元的性能(如计算精度、条件数、面元选择性等),并将其用于分析不均匀腔体的谐振问题。分析方法可有效地推广到任意形式的更高阶、叠层基的分析。 Based on H1(curl) tetrahedral interpolatory vector elements,explicit forms of the elemental matrices for the higher order vector elements are presented completely by using the classified bases and block matrix technique,the explicit results of integration matrices are also given.The results of a numerical experiment that investigates the resonant problem of a rectangular cavity,compare the performance of different vector elements systematically(such as calculated accuracy,condition numbers,selectivity of the facet related basis functions),which are also applied to the eigen-solution of inhomogeneously-filled cavities.The methods can be extended to the analysis of ultra higher order,hierarchical vector elements with any type effectively.
出处 《微波学报》 CSCD 北大核心 2010年第3期15-20,共6页 Journal of Microwaves
关键词 有限元方法 高阶 四面体矢量元 实现与性能比较 Finite element method(FEM) Higher order Tetrahedral vector elements Implementation and performance comparison
作者简介 尹文禄 男,1980年生,博士生。主要研究方向为电磁场数值计算、天线自动测试技术等。E—mail:yinwenLu_paper@yahoo.com.cn
  • 相关文献

参考文献24

  • 1Notaros B M. Higher order frequency-domain computational electromagnetics [ J ]. IEEE Transactions on Antennas and Propagation, 2008, 56 (8) : 2251-2276.
  • 2Nedelec J C. Mixed finite elements in R3[J]. Numerische Mathematik, 1980, 35(9): 315-341.
  • 3Graglia R D, Wilton D R, Peterson A F. Higher order interpolatory vector bases for computational electromagnetics [ J ]. IEEE Transactions on Antennas and Propagation, 1997, 45(3) : 329-342.
  • 4Webb J P. Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements [ J ]. IEEE Transactions on Antennas and Propagation, 1999, 47(8) : 1244-1253.
  • 5Savage J S, Peterson A F. Higher-order vector finite elements for tetrahedral cells[ J]. IEEE Transactions on Microwave Theory and Techniques, 1996, 44(6) : 874-879.
  • 6Ahagon A, Kashimoto T. Three-dimensional electromagnetic wave analysis using high order edge elements [ J ]. IEEE Transactions on Magnetics, 1995, 31 (3) : 1753- 1756.
  • 7Yiouhsis T V, Tsiboukis T D. Development and implementation of second and third order vector finite elements in various 3-D electromagnetic field problems [ J ]. IEEE Transactions on Magnetics, 1997, 33(2) : 1812-1815.
  • 8Ren Z, Ida N. Solving 3D eddy current problems using second order nodal and edge elements [ J ]. IEEE Transactions on Magnetics, 2000, 36 (4) : 746-750.
  • 9尹文禄,邓聪,柴舜连,毛钧杰,汪德宁.基于Nedelec条件的高阶矢量元构造与实现[J].微波学报,2009,25(3):7-12. 被引量:5
  • 10Lee J F, Sun D K, Cendes Z J. Tangential vector finite elements for electromagnetic field computation [ J ]. IEEE Transactions on Magnetics, 1991, 27(5) : 4032- 4035.

二级参考文献58

  • 1NEDELEC J C. Mixed finite elements in R3[J]. Numerisehe Mathematik, 1980, 35 (9) : 315-341.
  • 2NOTAROS B M. Higher order frequency-domain computational electromagnetics[J]. IEEE Transactions on Antennas and Propagation,2008, 56(8): 2251-2276.
  • 3MONK P. A finite element method for approximating the time-harmonic Maxwell equation[J]. Numerisehe Mathematik,1992, 63(1): 243-261.
  • 4GRAGLIA R D, WILTON D R, PETERSON A F. Higher order interpolatory vector bases for computational eleetromagnetics[J]. IEEE Transactions on Antennas and Propagation,1997, 45(3) : 329-342.
  • 5LEE J F, SUN D K, CENDES Z J. Tangential vector finite elements for electromagnetic field computation [J]. IEEE Transactions on Magnetics, 1991, 27(5) : 4032-4035.
  • 6PETERSON A F. Vector finite element formulation for scattering from two-dimensional heterGgeneous bodies[J]. IEEE Transactions on Antennas and Propagation,1994, 43(3): 357-365.
  • 7AHAGON A, KASHIMOTO T. Three-dimensional electromagnetic wave analysis using high order edge elements [J]. IEEE Transactions on Magnetics,1995, 31(3) : 1753- 1756.
  • 8YIOULTSIS T V, TSIBOUKIS T D. Development and implementation of second and third order vector finite elements in various 3-D electromagnetic field problems[J]. IEEE Transactions on Magnetics, 1997, 33(2): 1812-1815.
  • 9REN Z, IDA N. Solving 3D eddy current problems using second order nodal and edge elements[J]. IEEE Transactions on Magnetics,2000, 36(4) : 746-750.
  • 10DAVIDSON D B. Implementation issues for three-dimensional vector FEM programs[J]. IEEE Antennas and Propagation Magazine,2000, 42(6) : 100-107.

共引文献5

同被引文献40

  • 1NOTAROS B M. Higher order frequency-domain computational electromagnetics [J]. IEEE Transac- tions on Antennas and Propagation, 2008, 56 (8) : 2251-2276.
  • 2JIN J M. The Finite Element Method in Electromagnet- ics [M]. 2nd ed. New York: John Wiley and Sons, 2002.
  • 3NEDELEC J C. Mixed finite elements in R3 [J]. Numerisehe Mathematik. 1980, 35 (9), 315-341.
  • 4GRAGL1A R D, WILTON D R, PETERSON A F. Higher order interpolatory vector bases for computa- tional electromagnetics [J]. IEEE Transactions on Antennas and Propagation, 1997, 45 (3): 329-342.
  • 5WEBB J P. Hierarchal vector basis functions of arbi- trary order for triangular and tetrahedral finite ele- ments [J ]. IEEE Transactions on Antennas and Propagation, 1999, 47 (8): 1244-1253.
  • 6YIN W L, DONG J, CHEN L, et al. Systematic construction and performance comparison for higher order hierarchical tetrahedral vector elements [C] //International Conference on Wireless Commu- nications and Signal Processing. Suzhou China, 2010: 1-4.
  • 7CROWLEY C W, SILVESTER P P, HURWITZ H. Covariant projection elements for 3D vector field problems [J]. IEEE Transactions on Magnetics, 1988, 24 (1): 397-400.
  • 8WANG J S, IDA N. Curvilinear and higher order" edge" finite elements in electromagnetic field compu- tation [J]. IEEE Transactions on Magnetics, 1993, 29 (2) : 1491-1494.
  • 9PALMA M S, SARKER T K, CASTILLO L E G, et al. Iterative and Self Adaptive Finite Elements in Electromagnetic Modelling [ M]. Boston: Artech House, 1998.
  • 10MARAIS N, DAVIDSON D B. Numerical evalua- tion of hierarchical vector finite elements on eurvilin- ear domains in 2-D [J]. IEEE Transactions on An- tennas and Propagation, 2006, 54 (2): 734-738.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部