期刊文献+

基于PCA的坐姿行为识别 被引量:3

Behavior recognition based on sit posture using principle component analysis
在线阅读 下载PDF
导出
摘要 为了对坐姿下的几种行为进行识别,在分析常有坐姿的基础上,提出了通过PCA对八种不同姿势进行分类识别的方法。结合背景帧信息通过背景轮廓消减法提取运动目标区域,利用肤色在YCbCr空间聚集在一片固定区域且在CbCr平面上投影为一个近似椭圆的特性,在运动目标区域提取肤色区域,并对检测出的肤色灰度图进行PCA运算,实现了姿势识别。实验结果表明,所提出的利用PCA进行姿势识别的方法正确率达到84.92%,能够准确地识别坐姿行为,并且对运动阴影、光线变化具有良好的鲁棒性。 According to the usual sit posture,this paper recognized 8 kinds behavior of human based on sit posture using PCA.Firstly,detected the motion area by background contrast attenuation method.Then,considering the clustered skin area in a fixed region of YCbCr space which had ellipse-like projection in CbCr plane,extracted the skin area of motion object.Finally,realized the posture recognition by PCA on the grayscale image of skin.The experimental results show that the average accuracy of behavior recognizing is 84.92% and the proposed algorithm is reasonably robust in shadow and varying luminance.
出处 《计算机应用研究》 CSCD 北大核心 2010年第7期2786-2788,共3页 Application Research of Computers
基金 吉林省科技厅资助项目(20050703-1)
关键词 行为识别 坐姿 运动目标检测 肤色提取 主分量分析 behavior recognition sit posture motion detection skin extraction principle component analysis
作者简介 武松林(1984-),女,山西阳泉人,硕士研究生,主要研究方向为机器视觉、模式识别; 崔荣一(1962-),男(朝鲜族)(通信作者),吉林延吉人,教授,硕导,博士,主要研究方向为模式识别、智能计算(cuirongyi@ybu.edu.cn).
  • 相关文献

参考文献9

  • 1谷军霞,丁晓青,王生进.行为分析算法综述[J].中国图象图形学报,2009,14(3):377-387. 被引量:40
  • 2CUCCHIARA R,GRANA C,PRATI A,et al.Probabilistic posture classification for human-behavior analysis[J].IEEE Trans on Systems,Man,and Cybernetics-Part A:Systems and Humans,2005,35(1):42-54.
  • 3GUO Ping,MIAO Zhen-jiang,YUAN Yun.Posture and activity recognition using projection histogram and PCA methods[C] //Proc of Conference on Image and Signal Processing.2008:397-401.
  • 4胡长勃,冯涛,马颂德,卢汉清.基于主元分析法的行为识别[J].中国图象图形学报(A辑),2000,5(10):818-824. 被引量:11
  • 5JAIMES A.Sit straight (and tell me what I did today):a human posture alarm and activity summarization system[C] //Proc of the 2nd ACM Workshop on Continuous Archival and Retrieval of Personal Experiments.New York:ACM Press,2005:23-34.
  • 6郑锦,李波.视频序列中运动对象检测技术的研究现状与展望[J].计算机应用研究,2008,25(12):3534-3540. 被引量:10
  • 7SUN Jian,ZHANG Wei-wei,TANG Xiao-ou,et al.Background cut[C] //Proc of European Conference on Computer Vision.2006:628-641.
  • 8HSU R L,ABDEL-MOTTALEB M,JAIN A K,et al.Face detection in color image[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2002,24(5):696-706.
  • 9MATTHEW T,ALEX P.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86.

二级参考文献115

  • 1张忠伟,刘贵忠,李宏亮,李永利.基于能流信息的视频分割[J].电子学报,2005,33(1):177-180. 被引量:2
  • 2刘震,赵杰煜.基于混合概率背景模型的视频分割方法[J].计算机应用,2005,25(7):1616-1619. 被引量:1
  • 3李妍婷,罗予频,唐光荣.单目视频中的多视角行为识别方法[J].计算机应用,2006,26(7):1592-1594. 被引量:8
  • 4冯波,赵春晖,杨涛,张洪才,程咏梅.基于光流特征与序列比对的实时行为识别[J].计算机应用研究,2007,24(3):194-196. 被引量:6
  • 5ELGAMMAL A, DURAISWAMI R, DAVIS L. Efficient non-parametric adaptive color modeling using fast Gauss transform [ C ]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2001 : 563- 570.
  • 6TOYAMA K, KRUMM J, BRUMITT J, et al. Wallflower: principles and practice of background maintenance [ C ] HProc of the 7th IEEE International Conference on Computer Vision. 1999:255-261.
  • 7OLIVER N M, ROSARIO B, PENTLAND A P. A Bayesian computer vision system for modeling human interactions [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000,22 ( 8 ) : 831- 843.
  • 8CUCCHIARA R, GRANA C, PICCARDI M, et al. Detecting moving objects, ghosts, and shadows in video streams[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25 (10) : 1337- 1342.
  • 9ZHENG Jin, LI Bo, YAO Chuan-lian, Robust abnormity detecting and tracking using correlation coefficient[ C]//Proc of the 12th International Multi-Media Modeling Conference. 2006:72-79.
  • 10NERI A, COLONNESE S, RUSSO G, etal. Automatic moving object and background separation [ J ]. Signal Processing, 1998,66 ( 2 ) : 219-232.

共引文献58

同被引文献37

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部