期刊文献+

基于Voronoi图的组最近邻查询 被引量:12

Group Nearest Neighbor Queries Based on Voronoi Diagrams
在线阅读 下载PDF
导出
摘要 组最近邻查询由于涉及多个查询点,因此比传统的最近邻查询更为复杂.充分考虑查询点的分布特征以及它们构成的几何图形的性质和特点,给出组最近邻所应满足的条件及判断组最近邻的理论方法.提出基于Voronoi图的组最近邻查询的VGNN算法,可以精确求解查询点集的最近邻.对于查询点不共线的情况,该算法的查询方式是以一点为中心、向外扩张式的;对于查询点共线的情况,该算法给出搜索范围,限定了参与计算的数据点的个数.给出基于Voronoi图的VTree索引.实验结果表明,基于VTree索引的VGNN算法具有较好的性能,并且当查询点不共线时,其性能具有较高的稳定性. Group nearest neighbor query is more complex than the traditional nearest neighbor query because it contains one more query points. Its objective is to find a data point that has the smallest sum of distances to all query points. The conditions that group nearest neighbor should be satisfied and the theories that valuate the group nearest neighbor are put forward, which are obtained by considering the distribution characteristics of query points and the qualities of geometric figures that they form. The VGNN algorithm is presented to deal with group nearest neighbor query based on Voronoi diagrams. It can get the query points' nearest neighbor exactly by using the VGNN algorithm. When the query points are non-collinear, the query way of the VGNN algorithm is firstly to estimate one data point that is the query points' nearest neighbor possible, and then to outspread around the data point to find the final result. And it also concludes the search region when the query points are collinear to limit the quantity of data points which are included in the computation. The VTree index grounded on Voronoi diagrams is brought forward. Experimental results show that the VGNN algorithm based on the VTree index has better performance, and it is more stable when the query points are non-collinear.
出处 《计算机研究与发展》 EI CSCD 北大核心 2010年第7期1244-1251,共8页 Journal of Computer Research and Development
基金 黑龙江省自然科学基金项目(F200601)
关键词 组最近邻 VORONOI图 邻接生成点 VGNN算法 VTree索引 group nearest neighbor Voronoi diagrams adjacent generator VGNN algorithm VTree index
作者简介 (sundongpu@sina.com)孙冬璞,1979年生.博士研究生,主要研究方向为时空数据库. 郝忠孝,1940年生,教授,博士生导师,主要研究方向为数据库系统与理论、空值理论、无环数据库、主动数据库、时空数据库理论等.
  • 相关文献

参考文献6

  • 1刘永山,薄树奎,张强,郝忠孝.多对象的最近邻查询[J].计算机工程,2004,30(11):66-68. 被引量:8
  • 2Papadias D,Shen Q,Tao Y,et al.Group nearest neighbor queries[C] //Proc of the 20th Int Conf on Data Engineering.Los Alamitos,CA:IEEE Computer Society,2004:301-312.
  • 3Papadias D,Tao Y,Mouratidis K,et al.Aggregate nearest neighbor queries in spatial databases[J].ACM Trans on Database Systems,2005,30(2):529-576.
  • 4Li Hongga,Lu Hua,Huang Bo,et al.Two ellipse-based pruning methods for group nearest neighbor queries[C] //Proc of the 13th Annual ACM Int Workshop on Geographic Information Systems.New York:ACM,2005:192-199.
  • 5Luo Y,Chen H,Furuse K,et al.Efficient methods in finding aggregate nearest neighbor by projection-based filtering[C] //Proc of the Int Conf on Computational Science and Its Applications.Berlin:Springer,2007:821-833.
  • 6Sack J R,Urrutia J.Handbook on Computational Geometry[M].New York:Elsevier,2000:201-290.

二级参考文献6

  • 1[1]Roussopoulos N, Kelley S, Vincent F. Nearest Neighbor Queries. In: Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, 1995: 71-79
  • 2[3]Yu C, Ooi B C, Tan K L. Indexing the Distance: An Efficient Method to KNN Processing. VLDB, 2001
  • 3[4]Berchtold S, Ertl B, Keim D A. Fast Nearest Neighbor Search in High- dimensional Space. In: Proceedings of the 14th International Confer- ence on Data Engineering, 1998: 209-218
  • 4[5]Song Z, Roussopoulos N. K-Nearest Neighbor Search for Moving Query Point. SSTD, 2001
  • 5[6]White D A, Jain R. Similarity Indexing with the SS-tree. New Orleans, USA: Proceedings of the 12th International Conference on Data Engineering, 1996 :516-523
  • 6[7]Guttman A. R-Trees: A Dynamic Index Structure for Spatial Search- ing. In: Proceedings of the 1984 ACM SIGMOD International Confer- ence on Management of Data, 1984 : 47-57

共引文献7

同被引文献91

  • 1周长利,陈永红,田晖,蔡绍滨.保护位置隐私和查询内容隐私的路网K近邻查询方法[J].软件学报,2020,31(2):471-492. 被引量:13
  • 2司海棠,秦小麟,郝学峰.基于Voronoik阶邻近的目标预警预报方法[J].计算机应用,2009(2):598-601. 被引量:2
  • 3郝忠孝,刘永山.空间对象的反最近邻查询[J].计算机科学,2005,32(11):115-118. 被引量:11
  • 4王非,徐渝,李毅学.离散设施选址问题研究综述[J].运筹与管理,2006,15(5):64-69. 被引量:64
  • 5汤丽 徐玉滨 周牧等.基于K近邻算法的WLAN室内定位技术研究.计算机科学,2009,.
  • 6AURENHAMMER F. Voronoi diagrams-a survey of a fundamental geo- metric datastructure [ J ]. AGM Computing Surveys, 1991,23 ( 3 ) : 345-405.
  • 7Roussopoulos N, Kelly S, Vincent F. Nearest neighbor queries [C] //proc of the 1995 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 1995: 71-79.
  • 8Hjaltason G, Samet H. Distance browsing in spatial databases [J]. Journal of ACM Trans on Database Systems, 1999, 24(2): 265-318.
  • 9Papadias D, Shen Q, Tao v, et al. Group nearest neighbor queries [C] //Proc of the 20th Int Conf on Data Engineering. Los Alamitos: IEEE Computer Society, 2004: 301-312.
  • 10Li H, Lu H, Huang B, et al. Two ellipse-based pruning methods for group nearest neighbor queries [C] //Proc of the 13th Annual ACM Int Workshop on Geographic Information System. New York: ACM, 2005: 192-199.

引证文献12

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部