摘要
The hairpin probe using microwave resonance in plasma is applicable to high pressure 1.33 ×10^3-1.01×10^5 Pa)) as developed recently. In this work, an analytic model of the hairpin resonator probe surrounded by a thin dielectric layer and a sheath layer is proposed. The correction factor due to these surroundings is analytically found and confirmed by electromagnetic field finite difference time domain simulation, thus enabling the accurate measurement of electron density in a high-pressure non-equilibrium uniform discharge.
The hairpin probe using microwave resonance in plasma is applicable to high pressure 1.33 ×10^3-1.01×10^5 Pa)) as developed recently. In this work, an analytic model of the hairpin resonator probe surrounded by a thin dielectric layer and a sheath layer is proposed. The correction factor due to these surroundings is analytically found and confirmed by electromagnetic field finite difference time domain simulation, thus enabling the accurate measurement of electron density in a high-pressure non-equilibrium uniform discharge.
基金
supported by the National Natural Science Foundation of China (Grant No. 10835004 )
the 2nd Knowledge Cluster Research Project of Japan:Tokai Region Nanotechnology Manufacturing Cluster (Innovation of Environment Friendly Highly Functional Materials and Devices)