期刊文献+

若干图类的Wiener指数的极值(英文) 被引量:7

On the Extremal Wiener Indices of Some Graphs
在线阅读 下载PDF
导出
摘要 一个图的Wiener指数是指这个图中所有点对的距离和.Wiener指数在理论化学中有广泛应用.本文刻画了给定顶点数及特定参数如色数或团数的图中Wiener指数达最小值的图,同时也刻画了给定顶点数及团数的图中Wiener指数达最大值的图. The Wiener index of a graph is defined as the sum of distances between all pairs of vertices of the graph. It has been found extensive applications in chemistry. In this paper, we characterize the graphs which minimize the Wiener index among all graphs with given order and specific parameter, such as the chromatic number or clique number, and the graphs which maximize the Wiener index among all graphs with given order and clique number.
作者 林晓霞
机构地区 集美大学理学院
出处 《运筹学学报》 CSCD 2010年第2期55-60,共6页 Operations Research Transactions
基金 supported byby NSFC(No.10501018) the Science Foundation of Jimei University,China (ZQ2009011)
关键词 运筹学 WIENER指数 色数 团数 Operations research, Wiener index, chromatic number, clique number
  • 相关文献

参考文献15

  • 1Barefoot C.A.,Entringer R.C.,L.A.Székely.Extremal values for ratios of distances in trees[J].Discrete Appl.Math.,1997,80:37-56.
  • 2Bollobás B.Extremal graph theory[M].Academic Press,London,New York,San Francisco,1978.
  • 3Bollobás B.Modern graph theory[M].Volume 184 of Graduate Texts in Mathematics,Springer,Berlin,Heidelberg,New York,1998.
  • 4Bondy J.A.,Murty U.S.R.Graph theory with applications[M].Macmillan Press,London,1976.
  • 5Dobrynin A.A.,Entringer R.,Gutman I.Wiener index of trees:theory and applications[J].Acta Appl.Math.,2001,66:211-249.
  • 6Dobrynin A.A.,Gutman I.,Klavzar S.,Zigert P.Wiener index of hexagonal systems[J].Acta Appl.Math.,2002,72:247-294.
  • 7Entringer R.C.,Jackoson D.E.,Snyder D.A.Distance in graphs[J].Czechoslavak Math.J.,1976,26:283-296.
  • 8Entringer R.C.,Meir A.,Moon J.W.,Székely L.On the Wiener index of trees from certain families[J].Australas.J.Combin.,1994,10:211-224.
  • 9Fischermann M.,Hoffmann A.,Rautenbach D.,Székely L.,Volkmann L.Wiener index versus maximum degree in trees[J].Discrete Appl.Math.,2002,122:127-137.
  • 10Gutman I.,Soltés L.,The range of the Wiener index and mean isomer degeneracy[J].Z.Naturforsch,1991,46A:865-868.

同被引文献39

  • 1许振宇,穆勇.扇与Halin图的一致膨胀图的关联色数[J].济南大学学报(自然科学版),2006,20(3):264-266. 被引量:6
  • 2Khadikar P V.On a novel struetural descriptor PI [J]. Nat Aead Sei Lett, 2000,23:113 - 118.
  • 3Klaadikar P V, Karmarkar S,Agrawak V K.A novel PI index and its applications to QSPR/QSAR studies [J].J Cherm Inf Comput Sci, 2001,41 : 934-949.
  • 4Khadikar P V, Kale P P, Deshpande N V, et al.Novel PI indices of hexagonal chains [ J ].J Math Chem, 2001,29:143-150.
  • 5John P E, Khadikar P V, Singh J.A method of computing the PI index of benzenoid hydrocarbons using orthogonal cuts [J ].J Math Chem, 2006,42: 37-45.
  • 6Bondy J A, Murty U S R.Graph Theory with Applications[ M ].London: Macmillan Press Ltd, 1976.
  • 7Papadimitriou C H,Steiglitz K.Combinatorial Optimization:Algorithms and Complexity [M].Englewood Cliffs,New Jersey, Prentice-Hall Inc, 1982:129-133.
  • 8Hao J.The PI index of gated amalgam[J].ARS Combinatoria, 2009,91:135-145.
  • 9Wiener H. Structural determination of paraffin boiling point [J]. Amer Chem Soc, 1947, 69: 17-20.
  • 10Dobrymin A A, Entringer R, Gutman I. Wiener index of trees: theory and application [J] Acta Appl Math, 2001, 66: 211-249.

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部