期刊文献+

一种改进的协同过滤推荐算法 被引量:12

An Adaptive Algorithm for Collaborative Filtering Recommendation
在线阅读 下载PDF
导出
摘要 电子商务的蓬勃发展,使网站中能够提供的商品种类日益繁多,如何迎合客户的兴趣来推荐商品,成为当前电子商务亟待解决的重点问题.协同过滤作为目前推荐系统应用中最为成功的个性化推荐技术,也得到了越来越多研究者的关注.文章在简要介绍传统协同过滤推荐算法的基础上,重点对推荐算法无法适用于用户多兴趣下的推荐问题进行了剖析,提出了一种基于用户多兴趣的协同过滤推荐改进算法.通过实验仿真,验证了该算法的有效性. The vigorous development of e-commerce has enabled websites to provide an increasingly larger variety of products. How to recommend products catering for the interest of customers has become an important issue that urgently requires today's e-commerce to solve. Collaborative filtering, as the most successful personalized technique of recommendation in the existing recommendation system application, has gained more and more researchers' attention. Based on a brief introduction of traditional collaborative filtering recommendation, the paper is focused on analysis ofthe problem that recommendation algorithm fails to apply to recommendation with the users' multiple interests, and proposes an improved algorithm of collaborative filtering based on multiple interests of users. Via experimental simulation, the validity of the algorithm is verified.
出处 《河北工业大学学报》 CAS 北大核心 2010年第3期82-87,共6页 Journal of Hebei University of Technology
基金 河北省自然科学基金(F2008000117) 河北省科技攻关项目(07213508D)
关键词 电子商务 个性化推荐 数据挖掘 协同过滤推荐算法 用户多兴趣 electronic commerce personalized recommendation data mining collaborative filtering recommendationalgorithm user multiple-interests
作者简介 杨芳(1981-),女(汉族),博士生.
  • 相关文献

参考文献6

  • 1Chen Y L,Cheng L C.A novel collaborative filtering approach for recommending ranked items[J].Expert System with Applications,2008,34 (4):2396-2405.
  • 2Adomavicius G,Tuzhilin A.Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions[J].IEEE Trans on Knowledge and Data Engineering,2005,17(6):734-749.
  • 3余力,刘鲁,李雪峰.用户多兴趣下的个性化推荐算法研究[J].计算机集成制造系统,2004,10(12):1610-1615. 被引量:45
  • 4熊馨,王卫平,叶跃祥.基于概念分层的个性化推荐算法[J].计算机应用,2005,25(5):1006-1008. 被引量:17
  • 5Schafer J B,Konstan J A,Riedl J.Recommender systems in e-commerce[C].In Proceedings of the First ACM Conference on Electronic Commerce[A].Denver,CO:1999.158-166.
  • 6李杰,徐勇,王云峰,朱昭贤.面向个性化推荐的强关联规则挖掘[J].系统工程理论与实践,2009,29(8):144-152. 被引量:45

二级参考文献45

共引文献103

同被引文献126

引证文献12

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部