期刊文献+

气泡雾化旋流燃烧过程的数值模拟研究 被引量:1

Numerical Studies on the Swirl Combustion of Effervescent Atomized Spray
在线阅读 下载PDF
导出
摘要 利用概率密度函数模型(PDF),针对不同空气旋流强度下气泡雾化喷嘴出口下游庚烷雾群的燃烧过程进行了数值模拟研究.研究结果表明:随着空气旋流强度的增加,中心回流区逐渐向上游移动,且回流区长度减小、径向扩张,而角回流区则逐渐消失.适度提高空气旋流强度有利于强化离散相与连续相之间的混合过程,但过大的空气旋流强度将造成未蒸发的雾颗粒穿透剪切边界层,进入回流区内,造成不完全燃烧,甚至发生脱火.随着空气旋流强度的增加,火焰高温区域将逐渐前移,火焰张角有所增大;燃烧产物中CO的浓度随燃烧温度的提高有所降低,而NO的浓度则大幅提高.本文研究的气泡雾化喷嘴,匹配旋流数S=0.8-1.41的配风装置可以取得较好的燃烧效果. The swirl combustion of effervescent atomized heptane spray in a cylindrical combustion chamber was numerical simulated at different air swirl intensities using PDF. Enhancing of air swirl intensity will cause the central recirculation zone move upward, shorten in axial and expand in radial direction. And the corner recirculation zone will reduce and disappear little by little. Augmenting air swirl intensity moderately is propitious to strengthen the mixing of gases and droplets. Whereas, as the swirl number is too lager, the droplets will penetrate the boundary layer and enter into the central recirculation zone. That will cause incomplete combustion and flame liftoff. As the swirl intensity increases, the high temperature zone moves upriver, the flame expands in radial direction, and the average temperature of combustion chamber heightens. At the same time, the mass fraction of CO of exhaust gases decreases and the volume fraction of NO enhances remarkably. For effervescent atomizers, the swirl number S = 0.8 - 1.41 is recommended.
出处 《河北工业大学学报》 CAS 北大核心 2010年第3期77-81,97,共6页 Journal of Hebei University of Technology
基金 国家自然科学基金(50876026) 河北省自然科学基金(E2009000079) 天津市应用基础及前沿技术研究计划(08JCZDJC22800)
关键词 旋流强度 气泡雾化 液雾 湍流燃烧 数值模拟 swirl intensity effervescent atomization spray turbulent combustion numerical simulation
作者简介 刘联胜(1970-),男(汉族),教授.
  • 相关文献

参考文献11

  • 1Mcguirk J J,Palma J M L M.The flow inside a model gas turbine combustor:Calculations[J].Journal of Engineering for Gas Turbines and Power,1993,115:594-602.
  • 2Crocker D S,Nickolaus D,Smith C E.CFD modeling of gas turbine combustor from compressor exit to turbine inlet[J].Journal of Engineering for Gas Turbine and Power,1999,121:89-95.
  • 3Jeffrey A.Numerical cold flow and combustion characterization of swirl coaxial injectors[A].41st AIAA Aerospace Science Meeting and Exhibit[C].Tanuary,2003,629,AIAA22003201250.
  • 4Ying Huang.Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor[J].Proceedings of the Combustion Institute,2005,30:1775-1782.
  • 5Saario A,Rebola A,Coelho P J.Heavy fuel oil combustion in a cylindrical laboratory furnace:measurements and modeling[J].Fuel,2005,84:359-369.
  • 6Nayan Patel,Suresh Menon.Simulation of spray-turbulence-flame interctions in a lean direct injection combustor[J].Combustion and Flame,2008,153:228-257.
  • 7Hai-Wen Ge.Simulation of a turbulent spray flame using coupled PDF gas phase and spray flamelet modeling[J].Combustion and Flame,2008,153:173-185.
  • 8Habib M A,Elshafei M.Influence of combustion parameters on NO production in an industrial boiler[J].Computers and Fluids,2008,37:12-23.
  • 9王文丽,周力行,李荣先.用二阶矩亚网格尺度燃烧模型对丙烷-空气旋流扩散燃烧的大涡模拟[J].燃烧科学与技术,2007,13(2):97-100. 被引量:1
  • 10Sovani S D,Sojka P E,Lefbvre A H.Effervescent atomization[J].Progress in Energy and Combustion Science,2001,27:483-521.

二级参考文献15

  • 1胡瓅元,周力行,张健.两种亚网格燃烧模型的旋流扩散燃烧大涡模拟[J].推进技术,2006,27(1):48-51. 被引量:5
  • 2张源雪,刘联胜,杨华,衡国辉,杜聪,张财红.气泡雾化喷嘴燃烧产物成分的实验研究[J].燃烧科学与技术,2006,12(5):442-446. 被引量:2
  • 3刘联胜,杨华,衡国辉,杜聪,张财红.气液质量流量比对气泡雾化喷嘴燃烧特性的影响[J].燃烧科学与技术,2007,13(1):10-14. 被引量:8
  • 4Sovani S D, Sojka P E, Lefbvre A H. Effervescent atomization[J]. Progress in Energy and Combustion Science, 2001 27(4) : 483-521.
  • 5Geckler S. Effervescent Atomization of Visco-Elastic Liquids [ D]. West Lafayette, USA: Purdue University, 1994.
  • 6Panchagnula M V, Sojka P E. Spatial droplet velocity and size profile in effervescent atomizer-produced spray[ J]. Fuel, 1999, 78(6): 729-741.
  • 7Liu Liansheng, Yang Hua, Wu Jinxiang, et al. Studies on the flow-field downstream of the annular-spout effervescent atomizer[ C]// 9th Conference on Liquid Atomization and Spray System. Shanghai, 2004: 84-90.
  • 8Bar-Kohany T , Sher E . Effervescent atomization under sub-sonic and choked conditions: A theoretical approach [ J ]. Chemical Engineering Science, 2004, 59 : 5987-5995.
  • 9Sovani S D , Chou E , Sojka P E. High pressure effervescent atomization: Effect of ambient pressure on spray cone angle[J]. Fuel, 2001, 80: 427-435.
  • 10Lawler A, Wade R A. Flame length and pollutant emission characteristics of effervescent atomizer/burner stabilized jet flames, combustion fundamental and applications [ C]// Proceedings of the 1996 Technical Meeting of the Central State Section of the Combustion Institute. Missouri USA, 1996.

共引文献9

同被引文献6

  • 1江华,毛羽,吴德飞,王娟,孙毅.连续重整加热炉内多火焰组合燃烧的数值模拟[J].石油大学学报(自然科学版),2004,28(3):78-83. 被引量:6
  • 2周桂娟,毛羽,王娟,逄晓明.燃油燃烧器出口液雾燃烧及NO_x生成的数值模拟研究[J].石油炼制与化工,2007,38(2):6-10. 被引量:6
  • 3常兆光,王清河.应用统计方法[M].东营:中国石油大学出版社,2006:106-116.
  • 4范维澄,万跃鹏.流动与燃烧的模型与计算[M].合HE:中国科学技术大学出版社,1991.134-140.
  • 5TURELOVE J S. Discreate Ordinate Solutions of the Radiative Heat Transport Equation [J]. J Heat Transfer, 1987, 109 (4) : 1048-1051.
  • 6GE HAl-WEN. Simulation of a Turbulent Spray Flame Using Coupled PDF Gas Phase and Spray Flamelet Modeling[J]. Com- bustion and Flame, 2008, 153: 173-185.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部