期刊文献+

环路热管毛细芯热物性实验研究 被引量:24

Experimental Study on Thermo Physical Properties of Capillary Wicks for Loop Heat Pipe
在线阅读 下载PDF
导出
摘要 采用粉末冶金的方法,使用不同成型压力和不同造孔剂添加量制备了孔隙率为45%~80%的环路热管毛细芯。采用瞬态平面热源法,研究了毛细芯的导热系数、热扩散系数和单位体积热容。总结得到了热物性参数与孔隙率以及制备这些毛细芯所使用的成型压力和造孔剂添加量之间的关系。结果表明,随着孔隙率的增大,导热系数呈现出单调下降的趋势,但热扩散系数和单位体积热容却与孔隙率的关系并不明显。含水毛细芯的导热系数和单位体积热容均比相同参数下干态的要大,但热扩散系数的情况却不一样。随着成型压力的增大,毛细芯的导热系数显著增大,热扩散系数和单位体积热容变化情况不一。随着造孔剂添加量的增大,毛细芯的导热系数和单位体积热容显著减小,热扩散系数明显增大。 Loop heat pipe capillary wicks with porosity in the range of 45%-80% were prepared using different forming pressure and different space-holder addition by powder metallurgy method.Thermal conductivity,thermal diffusivity and volume specific heat were studied using the transient plane source method.The relationships between thermo physical properties and porosity,forming pressure and space-holder addition were investigated.The result shows that thermal conductivity decreases with the increase of porosity,but there are no obvious relationship between thermal diffusivity,volume specific heat and porosity.Both thermal conductivity and volume specific heat of water saturated state capillary wicks are bigger than those of dry state ones,but there is no obvious similar rule for thermal diffusivity.Thermal conductivity increases while there are no obvious changing trends for thermal diffusivity and volume specific heat with the increase of forming pressure.Thermal conductivity and volume specific heat decrease while thermal diffusivity increases with the increase of space-holder addition.
出处 《中国电机工程学报》 EI CSCD 北大核心 2010年第17期57-61,共5页 Proceedings of the CSEE
基金 国家重点基础研究发展计划项目(973项目)(2007CB206900)~~
关键词 毛细芯 导热系数 热扩散系数 比热容 瞬态平面热源法 capillary wick thermal conductivity thermal diffusivity specific heat transient plane source method
作者简介 李金旺(1984-),男,博士研究生,主要从事环路热管相关方面的研究,jinwang_li@163.com 邹勇(1970-),男,教授,博士生导师,主要从事换热器抑垢、环路热管、金属材料等相关方面的研究,yzou@sdu.edu.cn; 程林(1962-),男,教授,博士生导师,长江学者,973项目首席科学家,主要从事强化传热与节能技术相关方面的研究,cheng@sdu.edu.cn。
  • 相关文献

参考文献21

  • 1Maydanik Y. Loop heat pipes[J]. Applied Thermal Engineering, 2005, 25(5-6): 635-657.
  • 2Vasiliev L, Lossouarn D, Romestant C, et al. Loop heat pipe for cooling of high-power electronic components[J]. International Journal of Heat and Mass Transfer, 2009, 52(1-2): 301-308.
  • 3Yeh C, Liu B, Chen Y. A study of loop heat pipe with biporous wicks[J]. Heat and Mass Transfer, 2008, 44(12): 1537-1547.
  • 4姚寿广,马哲树,陈如冰.一种新型结构的热管式散热冷板性能的数值模拟试验与分析[J].中国电机工程学报,2005,25(7):41-45. 被引量:16
  • 5Adoni A, Ambirajan A, Jasvanth V, et al. Thermohydraulic modeling of capillary pumped loop and loop heat pipe[J]. Journal of Thermophysics and Heat Transfer, 2007, 21(2): 410-421.
  • 6Bai L, Lin G, Zhang H, et al. Mathematical modeling of steady-state operation of a loop heat pipe[J]. Applied Thermal Engineering, 2009, 29(13): 2643-2654.
  • 7Furukawa M. Model-based method of theoretical design analysis of a loop heat pipe[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(1): 111-121.
  • 8任川,吴清松.孔隙率和渗透率对LHP主芯性能影响研究[J].工程热物理学报,2007,28(4):634-636. 被引量:6
  • 9Banhart J. Manufacture, characterisation and application of cellular metals and metal foams[J]. Progress in Materials Science, 2001, 46(6): 559-632.
  • 10Singh R, Akbarzadeh A, Mochizuki M. Effect of wick characteristics on the thermal performance of the miniature loop heat pipe[J]. Journal of Heat Transfer Transactions of the ASME, 2009, 131(8).. 082601-082610.

二级参考文献32

共引文献63

同被引文献217

引证文献24

二级引证文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部