摘要
对无约束优化问题提出一种非单调自适应新锥模型信赖域算法。该算法在每次迭代过程中都能充分利用以前迭代点的二次信息和水平向量信息自动产生一个信赖域半径。证明了新算法的收敛性,并用数值实验证明新算法有望解决大规模优化问题。
In this paper,an adaptive trust-region algorithm based on the new conic model for unconstrained optimization is proposed.The trust radius in this method is automatically determined with first order information on the level vector and iteration.Under certain conditions,the global convergence of the algorithm is proved and the numerical experiments show that the new algorithm is expected to solve large scale optimization problems.
出处
《太原科技大学学报》
2010年第3期235-238,共4页
Journal of Taiyuan University of Science and Technology
关键词
新锥模型
非单调
自适应
水平向量
全局收敛性
new conic model
nonmonotone
adaptive
the level vector
global convergence
作者简介
王庆(1982-),女,硕士研究生,主要研究方向为最优化理论与算法。