期刊文献+

Said-Bézier型广义Ball曲线显式降多阶(英文) 被引量:2

Explicit Multi-Degree Reduction of Said-Bézier Generalized Ball Curves
在线阅读 下载PDF
导出
摘要 给出了计算Said-Bézier型广义Ball曲线(SBGB曲线)在L2范数下保持端点约束的一种最佳降多阶算法.基于SBGB基函数、幂基函数和Jacobi基函数之间的相互转换关系,得到了SBGB基函数和Jacobi基函数之间的显式转换矩阵;进一步利用Jacobi基的正交性和上述转换矩阵的逆矩阵,导出了SBGB曲线在L2范数下的显式约束降多阶算法.此算法蕴含了Said-Ball曲线、Bézier曲线以及位置介于这两类曲线之间的一大类参数曲线的相应降多阶算法.证明了这是一种可以预报最佳误差且满足端点高阶约束的一次性降多阶算法.最后用数值实例说明了算法的正确性和优越性. This paper presents an optimal algorithm to compute multi-degree reduction of Said-Bézier generalized Ball curves (SBGB) with endpoints constraints in the L2-norrn. Based on the relations between Said-Bézier basis, Power basis and Jacobi basis, this paper deduces the explicit transformation matrix from SBGB basis to Jacobi basis and in reverse order. Then based on the inverse matrix of the above matrix and the orthogonality of Jacobi basis, an explicit constrained algorithm for multi-degree reduction of SBGB curves in the L2-norm is put forward. This algorithm can be used in not only Said-Ball curve and Bézier curve but also the large class curves located between the two curves. This paper proves that the algorithm has some superiorities, including approximating optimal error of the degree reduction estimated beforehand, high order interpolation in the endpoints and multi-degree reduction in one time. Numerical examples demonstrate its validity and superiorities.
作者 刘刚 王国瑾
出处 《软件学报》 EI CSCD 北大核心 2010年第6期1473-1479,共7页 Journal of Software
基金 Supported by the National Natural Science Foundation of China under Grant Nos.60873111,60933007~~
关键词 SBGB曲线 Jacobi基 最佳逼近 降多阶 SBGB curve Jacobi basis optimal approximation multi-degree reduction
作者简介 LIU Gang was born in 1986. He is a Ph.D. candidate at Department of Mathematics, Zhejiang University. His current research areas are computer aided geometric design and computer graphics. WANG Guo-Jin was born in 1944. He is a professor and doctoral supervisor at Department of Mathematics, Zhejiang University. His research areas are computer aided geometric design, computer graphics, digital geometry processing.
  • 相关文献

参考文献4

二级参考文献24

共引文献37

同被引文献28

  • 1蒋素荣,王国瑾.Bézier曲线到Wang-Ball曲线的转换矩阵及其应用[J].计算机学报,2005,28(1):75-80. 被引量:2
  • 2郭清伟.两相邻Bézier曲线的近似合并[J].计算机辅助设计与图形学学报,2005,17(10):2275-2280. 被引量:7
  • 3沈莞蔷,汪国昭.Ball基的推广[J].软件学报,2005,16(11):1992-1999. 被引量:17
  • 4Ball A A. CONSURF, Part 1: Introduction to conic loftingtitle [J]. Computer-Aided Design, 1974, 6(4): 243-249.
  • 5Ball A A. CONSURF, Part 2: Description of thealgorithms [J]. Computer-Aided Design, 1975, 7(4):237-242.
  • 6Ball A A. CONSURF, Part 3: How the program is used [J].Computer-Aided Design, 1977, 9(1): 9-12.
  • 7Said H B. A generalized Ball curve and its recursivealgorithm [J]. ACM Transactions on Graphics, 1989,8(4): 360-371.
  • 8王国瑾. 高次Ball 曲线及其几何性质[J]. 高校应用数学学报: A 辑, 1987, 2(1): 126-140.
  • 9Wu H Y. Unifying representation of Bézier curve andgeneralized Ball curves [J]. Applied Mathematics: AJournal of Chinese Universities (Series B), 2000, 15(1):109-121.
  • 10Hu S M, Wang G Z, Jin T G. Properies of two types ofgeneralized Ball curves [J]. Computer-Aided Design,1996, 28(2): 125-133.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部